
​ ​​​ ​​ ​​ ​​ ​​ ​​ ​​ ​​ ​​ ​​ ​​
​​ ​​ ​​ ​​

​​ ​​ ​​ ​​ ​​ ​​ ​​ ​​ ​​ ​​ ​​
​​ ​​ ​​ ​​ ​​ ​​ ​​

​​ ​​ ​​ ​​ ​​ ​​ ​​ ​​
​​ ​​ ​​ ​​ ​​ ​​​​

​​ ​​ ​​ ​​ ​​ ​​ ​​ ​​ ​​ ​​ ​​

Table of Contents

1. Introduction 8

2. The HTTPS request and response structure 9

2.1. Implementation tips and best practice 10

3. Handshaking action 11

3.1. Client request 11

3.2. Server Response 12

3.3. List of AlpineBits® supported actions and capabilities 13

3.4. Unknown or missing actions 15

3.5. Implementation tips and best practice 15

4. Data exchange actions 16

4.1. FreeRooms: room availability notifications 18

4.1.1. Client request 18

4.1.2. Server response 20

4.1.3. Implementation tips and best practice 20

4.2. GuestRequests: quote requests, booking reservations and cancellations 22

Push Support 22

4.2.1. First client request 22

4.2.2 Server response 22

4.2.3. Follow-up client request (acknowledgement) 31

4.2.4. Follow-up server response 33

4.2.5. Implementation tips and best practice 33

4.2.6. Requests Push client request 35

4.2.7 Requests Push server response 35

4.3. SimplePackages: package availability notifications (removed) 37

4.4. Inventory: room category information 38

4.4.1. Inventory/Basic (push) client request 38

4.4.2. Inventory/Basic (push) server response 44

4.4.3. Inventory/Basic (pull) client request 44

4.4.4. Inventory/Basic (pull) server response 45

4.4.5. Inventory/HotelInfo (push) client request 45

4.4.6. Inventory/HotelInfo (push) server response 47

4.4.7. Inventory/HotelInfo (pull) client request 48

4.4.8. Inventory/HotelInfo (pull) server response 48

4.4.9. Implementation tips and best practice 48

4.5. RatePlans 50

4.5.1. Client request 50

4.5.2. Computing the cost of a stay 65

4.5.3. Synchronization 69

4.5.4. Server response 70

4.5.5. Implementation tips and best practice 70

4.6. BaseRates 72

4.6.1. Client request 72

4.6.2. Server response 73

A. AlpineBits® server response outcomes 74

B. AlpineBits® developer resources 79

C. Protocol Version Compatibility 80

C.1. Major overhaul in version 2018-10 80

Housekeeping / Handshaking 80

New action GuestRequests (Push) 80

New attribute RoomType 80

Reference to the online presence of the lodging structure 80

Review price calculation 80

Interaction with channel managers 80

Server request for complete data set 80

C.2. Major overhaul in version 2017-10 80

AlpineBits® server response outcomes 81

FreeRooms 81

GuestRequests 81

SimplePackages 81

Inventory 81

RatePlans 81

BaseRates 82

C.3. Minor updates in version 2015-07b 82

C.4. Major overhaul in version 2015-07 82

Inventory 82

C.5. Major overhaul in version 2014-04 83

HTTPS layer 83

FreeRooms 83

GuestRequests 83

SimplePackages 83

Inventory and RatePlans 83

C.6. Compatibility between a 2012-05b client and a 2013-04 server 83

C.7. Compatibility between a 2013-04 client and a 2012-05b server 84

D. External links 85

Disclaimer

This specification is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY.

If you find errors or you have proposals for enhancements, do not hesitate to contact us using the online

discussion group: https://groups.google.com/forum/#!forum/alpinebits.

About the AlpineBits Alliance

The "AlpineBits Alliance" is a group of SME operating in the touristic sector working together to innovate

and open the data exchange in the alpine tourism, and therefore to optimize the online presence, sales

and marketing efforts of the hotels and other accommodations in the alpine territory and also worldwide.

AlpineBits Alliance

Via Bolzano 63/A

39057 Frangarto / Appiano s.s.d.v. (BZ) - ITALY

VAT Reg No: IT02797280217

https://www.alpinebits.org

info@alpinebits.org

AlpineBits Alliance Members

Altea Software Srl - http://www.altea.it

aries.creative KG - http://www.ariescreative.com

ASA OHG - http://www.asaon.com

Brandnamic GmbH - http://www.brandnamic.com

Dolomiti.it Srl - http://www.dolomiti.it

GardenaNet snc - http://www.gardena.net

HGV - http://www.hgv.it

IDM Südtirol - Alto Adige - http://www.idm-suedtirol.com

Internet Consulting GmbH - http://www.inetcons.it

Internet Service GmbH - http://www.internetservice.it

LTS - http://www.lts.it

Marketing Factory GmbH - http://www.marketingfactory.it

MM-One Group Srl - http://www.mm-one.com

PCS Hotelsoftware GmbH - http://www.pcs-phoenix.com

Peer GmbH - http://www.peer.biz

Rateboard GmbH - http://www.rateboard.info

Schneemenschen GmbH - http://www.schneemenschen.de

SiMedia GmbH - http://www.simedia.com

trick17.media OHG - http://www.trick17.it

XLbit snc - http://www.xlbit.com

Yanovis - http://www.yanovis.com

Authors of this document:

AlpineBits® repository Contributors - https://gitlab.com/alpinebits/developers-kit/graphs/master

AlpineBits® 2018-10 page 1 of 85

https://groups.google.com/forum/#!forum/alpinebits
https://www.alpinebits.org
mailto:info@alpinebits.org
http://www.altea.it
http://www.ariescreative.com
http://www.asaon.com
http://www.brandnamic.com
http://www.dolomiti.it
http://www.gardena.net
http://www.hgv.it
http://www.idm-suedtirol.com
http://www.inetcons.it
http://www.internetservice.it
http://www.lts.it
http://www.marketingfactory.it
http://www.mm-one.com
http://www.pcs-phoenix.com
http://www.peer.biz
http://www.rateboard.info
http://www.schneemenschen.de
http://www.simedia.com
http://www.trick17.it
http://www.xlbit.com
http://www.yanovis.com
https://gitlab.com/alpinebits/developers-kit/graphs/master

Document Change Log

Important note: make sure to have the latest version of this document! The latest version is available

from https://www.alpinebits.org.

protocol
version

doc. release
date

description

2018-10 2018-11-30 Status:

• official release

Notable documentation changes:

• The AlpineBits® documentation is now edited using a public git

repository, see the repository history for detailed changelog

Updates and Addictions:

• Handshaking: the Housekeeping action has been renamed to

Handshaking and the relative chapter has been completely rewritten

introducing also breaking changes. Both server and client can now

announce the capabilities they support.

• GuestRequests: it is now possible to push the GuestRequests instead of

polling them.

• GuestRequests/Inventory: a new attribute has been added in order to

allow a finer classification of the guest accommodation.

• Inventory: added the possibility to exchange references to the online

presence of the lodging structure (e.g. social networks, review

aggregators, etc.)

• RatePlans: the price calculation has been reviewed and simplified

• BaseRates: the interaction with the Channel Managers has been

clarified and simplified

• Servers can now request the client to send a full data set in case of

suspected mis-alignment of data

AlpineBits® 2018-10 page 2 of 85

https://www.alpinebits.org

protocol
version

doc. release
date

description

2017-10 2017-11-08 Status:

• official release

Notable documentation changes:

• The AlpineBits® documentation is now released under the Creative

Commons Attribution-ShareAlike 3.0 Unported License

• The attached Trademark policy is now an integral part of the AlpineBits®

specifications

Updates and additions:

• Chapter 2: added version handshake best practices

• FreeRooms: added transmission of number of bookable rooms, added

purge of stale data

• Inventory: heavily updated and refactored

• GuestRequests: added Commission element, added encrypted credit

card numbers and made card holder name optional, added hints on how

to fill ReservationID

• RatePlans: added static rates, added supplements that are only

available on given days of the week and supplements that depend on

room category, improved and extended offers, added

SetForwardMinStay and SetForwardMaxStay, extended descriptions

and improved their documentation

• new action: BaseRates

• added general support of HTML in descriptions as an additional format

(with some warnings)

• minor textual improvements

Reorganization of the appendixes:

• Appendix A: common section about server response outcomes

• Appendix C: compatibility to previous versions described

• Appendix D: updated links to OTA2015A standard resources

Removals:

• removed SimplePackages

AlpineBits® 2018-10 page 3 of 85

protocol
version

doc. release
date

description

2015-07b 2016-08-01 Status:

• official release

Updates and additions:

• RatePlans: Section 4.5 has been rewritten to clarify details that the

previous version just skipped over, including a detailed description of the

price calculation algorithm

• RatePlans: new optional capability

OTA_HotelRatePlanNotif_accept_RatePlanJoin to allow displaying

alternative treatments for the same price list

• schema updates and validation: explicitly forbid some values (e.g. base

prices of 0 EUR) and limit length of some attributes

• minor fixes and clarifications

2015-07 2015-10-28 Status:

• official release

Updates and additions:

• OTA compatibility: version 2015A is now used

• GuestRequests: a series to modifications and additions to make it more

flexible especially for reservations

• GuestRequests: added refusals (warnings)

• GuestRequests: added booking modifications (ResStatus = 'Modify')

• RatePlans: changes to capabilities

• RatePlans: some clarifications and small additions

• RatePlans: partial rewrite and better explanation of Supplements

• RatePlans: added the explicit response messages

• Inventory: changes to capabilities

• Inventory: replaced by OTA_HotelDescriptiveContentNotifRQ

• Inventory: added possibility to send multimedia content

• Inventory: added additional descriptive content that may be sent

separately from the basic data

AlpineBits® 2018-10 page 4 of 85

protocol
version

doc. release
date

description

2014-04 2014-12-23 Status:

• official release with minor errata fixed

• section 4.2.3.: the example was not correct about the fact that the

presence of a SelectionCriteria Start requires the server to send the list

of inquiries again, regardless whether the client has retrieved them

before or not (example fixed and misleading sentence removed)

• section 4.1.1: the document did not mention that it is allowed to send a

single empty AvailStatusMessage element in a CompleteSet request to

reset the room availabilities in a given Hotel - the empty

AvailStatusMessage is required for OTA compatibility (this special case

is now explicitly mentioned)

• section 4.12: in the table at the end of the section the code for “Invalid

hotel” was wrongly given as 61 instead of 361 (typo fixed)

• section 4.5.2: the document did not mention that it is allowed to send a

single empty RatePlan element in a CompleteSet request to reset the

rate plans in a given Hotel - the empty RatePlan is required for OTA

compatibility (this special case is now explicitly mentioned)

2014-04 2014-10-15 Status:

• official release

Updates and additions:

• this is a major overhaul of AlpineBits® - see appendix C.4 for a list of

breaking changes, updates and additions

• new section: Inventory - room category information

• new section: RatePlans

AlpineBits® 2018-10 page 5 of 85

protocol
version

doc. release
date

description

2013-04 2013-05-24 Status:

• official release

Updates:

• Section 2 (HTTPS layer): added information regarding the new X-

AlpineBits-ClientID and X-AlpineBits-ClientProtocolVersion fields in

the HTTP header

• Section 3.2 (capabilities): added capability for FreeRooms deltas

• Section 4 (Intro): changed the text a bit to make it clearer that

AlpineBits® does indeed support booking requests and not only requests

for quotes

• Section 4.1 (FreeRooms): added the possibility to send partial

information (deltas); added warning response; much improved

description of the response in general

• Section 4.2 (GuestRequests): slightly improved the description of the

response in case of error

• Section 4.3 (Simple Packages): added limitation (just one Hotel per

request); added warning response; much improved description of the

response in general; clarified text to explicitly state that it is not allowed

to mix package add and delete requests in a single message

• Appendix B: this document should be language neutral so the code that

used to be here has been removed with a message to check the official

AlpineBits® site (with the current release the code is still in the

documentation kit, however)

• Appendix C: new appendix

2012-05b 2012-10-01 Status:

• official release

Updates:

• OTA compatibility: the attribute Thu is renamed to Thur and the

attribute Wed is renamed to Weds

• SimplePackages: the element Image is listed as mandatory in the

table as it already was in the text and schema files

• SimplePackages: The element RateDescription is listed as non-

repeatable in the table as it already was in the text and schema files

2012-05 2012-05-31 Status:

• official release

Updates:

• major rewrite of the text

• FreeRooms: action OTA_HotelAvailNotif is no longer mandatory

Additions:

• GuestRequests: reservation inquiries

• SimplePackages: package availability notifications

AlpineBits® 2018-10 page 6 of 85

protocol
version

doc. release
date

description

2011-11 2011-11-18 minor alterations and release under Creative Commons Attribution-NoDerivs

3.0 Unported License

2011-10 2011-10-20 production release with minor alterations

2011-09 2011-09-08 first draft of redesigned version (using POST instead of SOAP)

2010-10 2010-10-20 second draft

2010-08 2010-08-01 first draft

AlpineBits® 2018-10 page 7 of 85

1. Introduction

This documents describes a standard for exchanging traveling and booking information, called

AlpineBits®.

AlpineBits® builds upon established standards:

• client-server communication is done through stateless HTTPS (the client POSTs data to the server

and gets a response) with basic access authentication 1 and

• the traveling and booking information are encoded in XML following version 2015A of the OpenTravel

Schema 3, 4, 5 (from here on called OTA2015A) by the OpenTravel Alliance 2.

At the current version of the standard, the scope of AlpineBits® covers exchanging the following types of

information:

• room availability (FreeRooms),

• reservation inquiries (GuestRequests),

• room category information (Inventory) and

• prices (RatePlans).

AlpineBits® relies on its underlying transport protocol to take care of security issues. Hence the use of

HTTPS is mandatory.

AlpineBits® 2018-10 page 8 of 85

2. The HTTPS request and response structure

An AlpineBits® compliant server exposes a single HTTPS URL. Clients send POST requests to that

URL.

The POST request must transmit the access credentials using basic access authentication.

The HTTPS header of the POST request must contain an X-AlpineBits-ClientProtocolVersion field. The

value of this field is the protocol version supported by the client (see the first column of the changelog

table). A server that does not receive the field will simply conclude that the client speaks a protocol

version preceding the version when this field was introduced (2013-04).

The HTTPS header of the POST request may contain an X-AlpineBits-ClientID field. The value of this

field is an arbitrary string a server implementer might want to use to identify the client software version

or installation ID.

The POST request must follow the multipart/form-data encoding scheme, as commonly used in the

context of HTML forms for file uploads.

The POST request may be compressed using the gzip algorithm, in which case the HTTP request

header Content-Encoding must be present and have "gzip" as value. A POST request compressed with

gzip must be compressed by the client in its entirety (i.e. the whole message must be compressed, not

the single parts of the multipart/form-data content). It is a client responsibility to check whether the server

supports content compression, this is done by checking the value of the HTTP response header X-

AlpineBits-Server-Accept-Encoding which is set to "gzip" by servers who support this feature. The so

called "Handshaking" actions must not be compressed.

The POST requests must have at least one parameter named action. Depending on the value of

action, one additional parameter named request might be required.

Following is a capture of an example POST. In this example, the value of action is the string

OTA_HotelAvailNotif, indicating the client wishes to perform a room availability notification. The

value of request is an XML document (not fully shown).

POST / HTTP/1.1
Authorization: Basic Y2hyaXM6c2VjcmV0
Host: localhost
Accept: */*
X-AlpineBits-ClientProtocolVersion: 2015-07
X-AlpineBits-ClientID: sample-client.php v. 2015-07 1.0
Content-Length: 1989
Expect: 100-continue
Content-Type: multipart/form-data; boundary=----------------------------9d7042ecb251

------------------------------9d7042ecb251
Content-Disposition: form-data; name="action"

OTA_HotelAvailNotif:FreeRooms
------------------------------9d7042ecb251
Content-Disposition: form-data; name="request"

<?xml version="1.0" encoding="UTF-8"?>

<OTA_HotelAvailNotifRQ
 [...]
</OTA_HotelAvailNotifRQ>
------------------------------9d7042ecb251--

Note the Authorization field, with the username/password string (chris:secret) encoded in

base64 (Y2hyaXM6c2VjcmV0) as defined by the basic access authentication standard 1.

Also note the X-AlpineBits-ClientProtocolVersion and X-AlpineBits-ClientID fields and

AlpineBits® 2018-10 page 9 of 85

the multipart content with the values of parameters action and request.

As a result of the POST request, the server answers with a response. Of course, the content of the

response depends on the POSTed parameters, in particular the value of action. AlpineBits® currently

identifies two kinds of actions: the so-called handshaking actions explained in section 3 and the actual

data exchange actions explained in section 4.

The expected status code of the response is 200 (Ok), indicating that the server could authenticate the

user (with or without being able to actually process any action).

In case of authentication failure (either an invalid or missing username/password or a value of X-

AlpineBits-ClientID that is not acceptable to the server) the status code is 401 (Authorization Required)

and the content is ERROR, followed by a colon (:) and an error message indicating the reason for the

failure, such as no username/password was provided or the password expired, etc. Regarding the X-
AlpineBits-ClientID, a server chooses to require the ID or to ignore the ID. If the server chooses to

ignore the ID, it must do so silently, i.e. it must not return a 401 status because of the presence of the

ID.

In case of internal server problem the status code is 500 (Internal Server Error).

A server that has not announced support for requests compressed with gzip may return the status code

501 (not implemented) in case it receives such requests.

An AlpineBits® client must be able to handle these status codes. It should retry a request that has failed

(error code 500 or timeout) and only escalate the failure after 2 retries with an appropriate delay.

2.1. Implementation tips and best practice

• For maximum compatibility across different implementations AlpineBits® implementers are asked to

handle POST requests using a supporting API in their language of choice. See appendix B for more

resources.

• All POSTs to an AlpineBits® server are sent to a single URL. However, a server implementer might

make more than one URL available for independent servers, such as servers with support for

different versions:

◦ https://server.example.com/alpinebits/2011-11

◦ https://server.example.com/alpinebits/2012-05b

◦ etc…

• Gzip compression can make request smaller by a factor ten, therefore it was introduced in

AlpineBits® even though its usage in POST requests isn’t very common (as opposed to responses

where its use is widespread). According to the various RFCs, compressing the requests is not

forbidden, but there are no implementation recommendations. It was decided to use an approach

major web servers were already supporting at the time of this writing.

• When negotiating an AlpineBits® version, clients and servers should behave in the following way (this

works starting from 2013-04):

◦ Client: the client queries the server version, sending a header with the highest version it supports.

◦ Server: if the server supports this same version, it answers with this version and the negotiation

terminates successfully; otherwise the server answers with the highest version it supports.

◦ Client: if the client recognizes the server version, it starts using the server version and the

negotiation terminates successfully; otherwise no communication is possible, since the two

parties don’t share a common version.

AlpineBits® 2018-10 page 10 of 85

https://server.example.com/alpinebits/2011-11
https://server.example.com/alpinebits/2012-05b

3. Handshaking action

The handshaking action allows client and server to agree on the supported AlpineBits® versions and

capabilities. Any AlpineBits® client or server must be able to handle this request. In the rest of this

chapter the word "actor" will be used when referring to either client or server.

It is the client’s responsibility to ensure the server can handle the actions it intends to perform. Clients

are therefore invited to perform the handshaking before issuing the data exchange actions described in

section 4.

Please note that this chapter was completely rewritten in AlpineBits® 2018-10 version, and it introduces

breaking changes. This was needed to significantly streamline the handshaking progress.

The following table lists all available handshaking actions.

usage
(since)

mandatory parameter action
(string)

parameter request and
server response (XML
document)

client sends its supported actions
and capabilities (since 2018-10)

YES OTA_Ping:Handshaking OTA_PingRQ
OTA_PingRS

3.1. Client request

The parameter request must contain an OTA_PingRQ document.

The EchoData element must contain a JSON object, build according to the following rules:

• The root element is a JSON array with name versions

• Each element of the array versions is a JSON object

Each object of the versions array is built according to the following rules:

• A member with name version and value corresponding to a valid AlpineBits® version string must

be present (see the first column of the changelog table, e.g. 2018-10 for the first version of

AlpineBits® that supports handshaking)

• A JSON array with name actions may be present

Each element of the actions array is a JSON object build according to the following rules:

• A member with name action and value corresponding to one supported action

• A JSON array with name supports, listing all the supported capabilities for the sibling action

AlpineBits® 2018-10 page 11 of 85

<EchoData>
{
 "versions": [{
 "version": "2018-10",
 "actions": [
 {
 "action": "action_OTA_Ping"
 },{
 "action": "action_OTA_HotelRatePlan_BaseRates",
 "supports": ["OTA_HotelRatePlan_BaseRates_deltas"]
 },{
 "action": "action_OTA_HotelRatePlanNotif_RatePlans",
 "supports": [
 "OTA_HotelRatePlanNotif_accept_overlay",
 "OTA_HotelRatePlanNotif_accept_Supplements",
 "OTA_HotelRatePlanNotif_accept_RatePlan_BookingRule",
 "OTA_HotelRatePlanNotif_accept_FreeNightsOffers",
 "OTA_HotelRatePlanNotif_accept_FamilyOffers"
]
 }
]
 }]
}
</EchoData>

 example of Handshake client request, only the EchoData element is shown.

For every succesfully negotiated (see below) action, the client must set the X-AlpineBits-
ClientProtocolVersion HTTP header according to the sibling version when performing the

subsequent data exchange with the server.

In order to avoid misintepretations, the AlpineBits® versions below 2018-10 may be part of the JSON

object, but there must not be any actions array specified for them. The handshaking of the legacy

versions must happen in subsequent requests following the legacy rules.

3.2. Server Response

The response is an OTA_PingRS document.

As mandated by OTA, the content of the EchoData element must be identical to what the client sent.

The server must add to the response a Warning element with Type 11 and Status
ALPINEBITS_HANDSHAKE. The content of this element must be the intersection between the client

announced versions, actions and capabilities and what the server actually supports.

AlpineBits® 2018-10 page 12 of 85

<?xml version="1.0" encoding="UTF-8"?>

<OTA_PingRS xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns="http://www.opentravel.org/OTA/2003/05"
 xsi:schemaLocation="http://www.opentravel.org/OTA/2003/05 OTA_PingRS.xsd"
 Version="8.000">
 <Success/>
 <Warnings>
 <Warning Type="11" Status="ALPINEBITS_HANDSHAKE">
 {
 "versions": [{
 "version": "2018-10",
 "actions": [
 {
 "action": "action_OTA_Ping"
 },{
 "action": "action_OTA_HotelRatePlan_BaseRates",
 "supports": ["OTA_HotelRatePlan_BaseRates_deltas"]
 }
]
 }]
 }
 </Warning>
 </Warnings>
 <EchoData>
 {
 "versions": [{
 "version": "2018-10",
 "actions": [
 {
 "action": "action_OTA_Ping"
 },{
 "action": "action_OTA_HotelRatePlan_BaseRates",
 "supports": ["OTA_HotelRatePlan_BaseRates_deltas"]
 },{
 "action": "action_OTA_HotelRatePlanNotif_RatePlans",
 "supports": [
 "OTA_HotelRatePlanNotif_accept_overlay",
 "OTA_HotelRatePlanNotif_accept_Supplements",
 "OTA_HotelRatePlanNotif_accept_RatePlan_BookingRule",
 "OTA_HotelRatePlanNotif_accept_FreeNightsOffers",
 "OTA_HotelRatePlanNotif_accept_FamilyOffers"
]
 }
]
 }]
 }
 </EchoData>

</OTA_PingRS>

example of Handshake server response.

3.3. List of AlpineBits® supported actions and capabilities

• action_OTA_Ping
handshaking action (support for this action is mandatory)

• action_OTA_HotelAvailNotif
the actor implements handling room availability notifications (FreeRooms)

• OTA_HotelAvailNotif_accept_rooms
for room availability notifications (FreeRooms), the actor accepts booking limits for specific rooms

• OTA_HotelAvailNotif_accept_categories
for room availability notifications (FreeRooms), the actor accepts booking limits for categories of

rooms

AlpineBits® 2018-10 page 13 of 85

• OTA_HotelAvailNotif_accept_deltas
for room availability notifications (FreeRooms), the actor accepts partial information (deltas)

• OTA_HotelAvailNotif_accept_BookingThreshold
for room availability notifications (FreeRooms), the actor accepts the number of rooms that are

considered free but not bookable

• action_OTA_Read
the actor implements handling quote requests, booking reservations and cancellations

(GuestRequests Pull)

• action_OTA_HotelResNotif_GuestRequests
the actor implements pushing quote requests, booking reservations and cancellations

(GuestRequests Push)

• action_OTA_HotelDescriptiveContentNotif_Inventory
the actor implements handling Inventory/Basic (push)

• OTA_HotelDescriptiveContentNotif_Inventory_use_rooms
for room category information (Inventory), the actor needs information about specific rooms

• OTA_HotelDescriptiveContentNotif_Inventory_occupancy_children
for room category information (Inventory), the actor supports applying children rebates also for

children below the standard occupation

• action_OTA_HotelDescriptiveContentNotif_Info
the actor implements handling Inventory/HotelInfo (push)

• action_OTA_HotelDescriptiveInfo_Inventory
the actor implements handling Inventory/Basic (pull)

• action_OTA_HotelDescriptiveInfo_Info
the actor implements handling Inventory/HotelInfo (pull)

• action_OTA_HotelRatePlanNotif_RatePlans
the actor implements handling prices (RatePlans)

• OTA_HotelRatePlanNotif_accept_ArrivalDOW
for prices (RatePlans), the actor accepts arrival DOW restrictions in booking rules

• OTA_HotelRatePlanNotif_accept_DepartureDOW
for prices (RatePlans), the actor accepts departure DOW restrictions in booking rules

• OTA_HotelRatePlanNotif_accept_RatePlan_BookingRule
for prices (RatePlans), the actor accepts "generic" booking rules

• OTA_HotelRatePlanNotif_accept_RatePlan_RoomType_BookingRule
for prices (RatePlans), the actor accepts "specific" booking rules for the given room types

• OTA_HotelRatePlanNotif_accept_RatePlan_mixed_BookingRule
for prices (RatePlans) and within the same rate plan, the actor accepts both "specific" and "generic"

booking rules. Both "generic" and "specific" rules capabilities must still be announced by the actor.

• OTA_HotelRatePlanNotif_accept_Supplements
for prices (RatePlans), the actor accepts supplements

• OTA_HotelRatePlanNotif_accept_FreeNightsOffers
for prices (RatePlans), the actor accepts free nights offers

• OTA_HotelRatePlanNotif_accept_FamilyOffers
for prices (RatePlans), the actor accepts family offers

• OTA_HotelRatePlanNotif_accept_overlay
for prices (RatePlans), the actor accepts the rate plan notif type value Overlay

• OTA_HotelRatePlanNotif_accept_RatePlanJoin
for prices (RatePlans), the actor supports grouping RatePlans with different MealPlanCodes under a

single price list

• OTA_HotelRatePlanNotif_accept_OfferRule_BookingOffset
for prices (RatePlans), the actor accepts the OfferRule restrictions MinAdvancedBookingOffset and

AlpineBits® 2018-10 page 14 of 85

MaxAdvancedBookingOffset

• OTA_HotelRatePlanNotif_accept_OfferRule_DOWLOS
for prices (RatePlans), the actor accepts the OfferRule restrictions ArrivalDaysOfWeek,

DepartureDaysOfWeek, SetMinLOS and SetMaxLOS

• action_OTA_HotelRatePlan_BaseRates
the actor implements handling BaseRates

• OTA_HotelRatePlan_BaseRates_deltas
the actor supports delta information with BaseRates

AlpineBits® requires an actor to support at least all mandatory handshaking actions.

All other capabilities are optional. It is a client’s responsibility to check for server capabilities before

trying to use them. A server implementation is free to ignore information that requires a capability it

doesn’t declare. A server must, however, implement all capabilities it declares.

3.4. Unknown or missing actions

Upon receiving a request with an unknown or missing value for action, the server response is the string:

ERROR:unknown or missing action.

Please note that the legacy "housekeeping actions" (namely: getVersion and getCapabilities)

have been removed from this version of AlpineBits® and will yield to such a response.

3.5. Implementation tips and best practice

• OTA requires the root element of an XML document to have a version attribute. As regards

AlpineBits®, the value of this attribute is irrelevant.

• The handshaking action allows actors that are able to support multiple AlpineBits® versions to

negotiate the best combinations of versions and capabilities with a single request. The suggested

approach for a client is to list all the AlpineBits® versions and the related actions / capabilities
it supports in a single request.

• Since the server is performing an intersection between the received JSON object and its supported

versions and capabilities the response might be an empty JSON object ({}), this is an indication that

there was a failure in parsing the requests' JSON.

AlpineBits® 2018-10 page 15 of 85

4. Data exchange actions

These actions allow the actual exchange of data between client and server.

For data exchange actions, both parameters (action and request) are mandatory.

The value of the request parameter (sent by the client) and the server response are XML documents

following OTA2015A and using the XML root elements specified in the following table:

known as (since) usage parameter action (string) parameter request and
server response (XML
documents)

FreeRooms (since 2011-

11)

a client sends room

availability notifications to

a server

OTA_HotelAvailNotif:FreeR
ooms

OTA_HotelAvailNotifRQ
OTA_HotelAvailNotifRS

GuestRequests (since

2012-05)

a client sends a request

to receive requests for a

quote or booking

requests from the server

OTA_Read:GuestRequests OTA_ReadRQ
OTA_ResRetrieveRS

GuestRequests (Push)

(since 2018-10)

a client sends requests

for a quote or booking

requests to the server

OTA_HotelResNotif:GuestRe
quests

OTA_HotelResNotifRQ
OTA_HotelResNotifRS

GuestRequests/Acknow

ledgments (since 2014-

04)

a client acknowledges the

requests it has received
OTA_NotifReport:GuestRequ
ests

OTA_NotifReportRQ
OTA_NotifReportRS

SimplePackages (2012-

05 until 2015-07b)

this action has been removed in version 2017-10

Inventory/Basic (Push)

(since 2015-07)

a client sends room

category information and

room lists

OTA_HotelDescriptiveConte
ntNotif:Inventory

OTA_HotelDescriptiveConte
ntNotifRQ
OTA_HotelDescriptiveConte
ntNotifRS

Inventory/Basic (Pull)

(since 2017-10)

a client requests room

category information and

room lists

OTA_HotelDescriptiveInfo:
Inventory

OTA_HotelDescriptiveInfoR
Q
OTA_HotelDescriptiveInfoR
S

Inventory/HotelInfo

(Push) (since 2015-07)

a client sends additional

descriptive content

regarding room

categories

OTA_HotelDescriptiveConte
ntNotif:Info

OTA_HotelDescriptiveConte
ntNotifRQ
OTA_HotelDescriptiveConte
ntNotifRS

Inventory/HotelInfo

(Pull) (since 2017-10)

a client requests

additional descriptive

content regarding room

categories

OTA_HotelDescriptiveInfo:
Info

OTA_HotelDescriptiveInfoR
Q
OTA_HotelDescriptiveInfoR
S

RatePlans (since 2014-

04)

a client sends information

about rate plans with

prices and booking rules

OTA_HotelRatePlanNotif:Ra
tePlans

OTA_HotelRatePlanNotifRQ
OTA_HotelRatePlanNotifRS

BaseRates (since 2017-

10)

a client requests

information about rate

plans

OTA_HotelRatePlan:BaseRat
es

OTA_HotelRatePlanRQ
OTA_HotelRatePlanRS

AlpineBits® requires all XML documents to be encoded in UTF-8.

AlpineBits® 2018-10 page 16 of 85

The business logic of an AlpineBits® server, i.e. how the server processes and stores the information it

receives is implementation-specific.

The format of the requests and responses is, however, exactly specified.

First of all the requests and responses must validate against the OTA2015A schema.

Since OTA is very flexible regarding mandatory / optional elements, AlpineBits® adds extra requirements

about exactly which elements and attributes are required in a request.

If these are not present, a server’s business logic is bound to fail and will return a response indicating an

error even though the request is valid OTA2015A.

OTA2015A, for instance allows OTA_HotelAvailNotifRQ requests that do not indicate the hotel, this

might make perfect sense in some context, but an AlpineBits® server will return an error if that

information is missing from the request.

To aid developers, two AlpineBits® schema files (one XML schema file and one Relax NG schema file)

are provided as an integral part of the specification in the AlpineBits® documentation kit.

The Relax NG file is somewhat stricter than the XML schema file as RelaxNG is intrinsically more

powerful in expressing constraints that express how elements and attributes depend on each other.

Both AlpineBits® schema files are stricter than OTA2015A in the sense that all documents that validate

against AlpineBits® will also validate against OTA2015A, but not vice versa.

The AlpineBits® documentation kit also provides a sample file for each of the request and response

documents.

The latest AlpineBits® documentation kit for each protocol version is available from the official AlpineBits®

website.

AlpineBits® 2018-10 page 17 of 85

4.1. FreeRooms: room availability notifications

When the value of the action parameter is OTA_HotelAvailNotif:FreeRooms the client intends to

send room availability notifications to the server.

A server that supports this action must support at least one of two capabilities:

OTA_HotelAvailNotif_accept_rooms or OTA_HotelAvailNotif_accept_categories. This

way the server indicates whether it can handle the availability of rooms at the level of distinct rooms, at

the level of categories of rooms or both.

4.1.1. Client request

The parameter request must contains an OTA_HotelAvailNotifRQ document.

Clients and servers typically wish to exchange only delta information about room availabilities in order to

keep the total amount of data to be processed in check.

However, for simplicity let us first consider a request where the client transmits the complete availability

information as might be the case for a first synchronization.

Consider the outer part of the example document:

<?xml version="1.0" encoding="UTF-8"?>

<OTA_HotelAvailNotifRQ
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns="http://www.opentravel.org/OTA/2003/05"
 xsi:schemaLocation="http://www.opentravel.org/OTA/2003/05
OTA_HotelAvailNotifRQ.xsd"
 Version="1.002">

 <UniqueID Type="16" ID="1" Instance="CompleteSet"/>

 <AvailStatusMessages HotelCode="123" HotelName="Frangart Inn">

 <!-- ... see below ... -->

 </AvailStatusMessages>

</OTA_HotelAvailNotifRQ>

 samples/FreeRooms-OTA_HotelAvailNotifRQ.xml - outer part

An OTA_HotelAvailNotifRQ may contain just one AvailStatusMessages (note the plural)

element, hence at most one hotel can be dealt with in a single request.

The UniqueID element with attribute Instance = CompleteSet and Type = 16 indicates that this

message contains the complete information (as entered by the user). When receiving such a request, a

server must remove all information about any availability it might have on record regarding the given

hotel.

The attribute ID is needed for compatibility with OTA, the value is ignored by AlpineBits®.

A client might want to let a server know its availability data should be purged based on internal business

rules. An example might be availability data that is considered stale, because it hasn’t been updated by

the user for some time. The client then should send a request using an UniqueID element with

attribute Instance = CompleteSet and Type = 35. A server must accept this value (without returning

an error or warning) and could make use of this hint and keep the availability data it has on record

marking it as purged. Otherwise such a message should be considered equivalent to the one with Type
= 16.

If the UniqueID element is missing, the message contains delta information. In that case the server

AlpineBits® 2018-10 page 18 of 85

updates only the information that is contained in the message without touching the other information that

it has on record.

AlpineBits® requires the attributes HotelCode or HotelName to be present (and match information in

the server’s database). The fictitious hotel in the example is the "Frangart Inn" with code "123".

Specifying both — code and name — is redundant, but allowed, as long as both are consistent.

AlpineBits® requires a match of HotelCode, HotelName to be case sensitive.

Second, consider the inner part of the example that contains AvailStatusMessage (note the singular)

elements for three different rooms.

Let’s start with the availabilities for room 101S.

<AvailStatusMessage BookingLimit="1"
 BookingLimitMessageType="SetLimit"
 BookingThreshold="0">

 <StatusApplicationControl Start="2010-08-01" End="2010-08-10"
 InvTypeCode="double" InvCode="101S" />

</AvailStatusMessage>

<AvailStatusMessage BookingLimit="1"
 BookingLimitMessageType="SetLimit"
 BookingThreshold="0">

 <StatusApplicationControl Start="2010-08-21" End="2010-08-30"
 InvTypeCode="double" InvCode="101S" />

</AvailStatusMessage>

samples/FreeRooms-OTA_HotelAvailNotifRQ.xml - inner part

The use of the InvCode attribute tells us we’re dealing with a specific room (101S) that belongs to the

room category given by the InvTypeCode (double).

Alternatively, using a InvTypeCode without a InvCode attribute would indicate that the availability

refers to a category of rooms, not a specific room.

AlpineBits® requires a match of InvCode or InvTypeCode to be case sensitive.

An AlpineBits® server must be able to treat at least one case out of the two cases (specific rooms or

categories). A client should perform the getCapabilities action to find out whether the server treats

the room case (token OTA_HotelAvailNotif_accept_rooms), the category case (token

OTA_HotelAvailNotif_accept_categories) or both.

Mixing rooms and categories in a single request is not allowed. An AlpineBits® server must return an

error if it receives such a mixed request.

The attribute Start and End indicate that room 101S is available from 2010-08-01 to 2010-08-10 and

from 2010-08-21 to 2010-08-30.

Regarding the first interval, this means the earliest possible check-in is 2010-08-01 afternoon and latest

possible check-out is 2010-08-11 morning (maximum stay is 10 nights).

Check-ins after 2010-08-01 and stays of less than 10 nights are allowed as well, provided the check-out

is not later than 2010-08-11 morning.

Idem for the other block of 10 nights from 2010-08-21 to 2010-08-30 (latest check-out is 2010-08-31

morning).

Note that AlpineBits® does not allow AvailStatusMessage elements with overlapping periods. This

AlpineBits® 2018-10 page 19 of 85

implies that the order of the AvailStatusMessage elements doesn’t matter. It is a client’s

responsibility to avoid overlapping. An AlpineBits® server’s business logic may identify overlapping and

return an error or may proceed in an implementation-specific way.

The integer value of the attribute BookingLimit indicates the number of available rooms. Since in the

example we’re dealing with a specific room here (InvCode is 101S), the only meaningful value of

BookingLimit is 0 or 1 (the same room can not be available more than once). In the category case,

numbers larger than 1 would also be allowed.

BookingLimit numbers are always interpreted to be absolute numbers. Differential updates are not

allowed.

A server may support handling rooms that are considered free but not bookable (see section

GuestRequests for the description of bookings) and must set the

OTA_HotelAvailNotif_accept_BookingThreshold capability accordingly.

If the capability is set, a client must send the BookingThreshold attribute in the

AvailStatusMessage element. A client that is only sending bookable rooms must set

BookingThreshold to 0.

The number of bookable rooms are hence given by BookingLimit - BookingThreshold.

Since overbooking is not allowed and the number of bookable rooms cannot exceed the number of free

rooms the inequality 0 ≤ BookingThreshold ≤ BookingLimit holds.

If the server does not have the capability set, a client must not send the BookingThreshold attribute

in the AvailStatusMessage element, and all the rooms are implicitly considered bookable.

It also requires exactly one StatusApplicationControl element with attributes Start, End,

InvTypeCode and (optional InvCode) for each AvailStatusMessage element. It must return an

error if any of these are missing. There is however one exception: to completely reset all room availability

information for a given Hotel a client might send a CompleteSet request with just one empty

AvailStatusMessage element without any attributes. The presence of the empty

AvailStatusMessage element is required for OTA validation.

AlpineBits® recommends that Implementers that use delta requests should send the full set of

information periodically.

A server that supports delta requests must indicate so via the

OTA_HotelAvailNotif_accept_deltas capability. As always, it is the client’s responsibility to

check whether the server supports deltas before trying to send them.

4.1.2. Server response

The server will send a response indicating the outcome of the request. The response is a

OTA_HotelAvailNotifRS document. Any of the four possible AlpineBits® server response outcomes

(success, advisory, warning or error) are allowed.

See Appendix A for details.

4.1.3. Implementation tips and best practice

• Note that in the 2011-11 version of AlpineBits® the support of this action was mandatory for the

server. This is no longer the case.

• Note that sending partial information (deltas) was added with AlpineBits® 2013-04.

• For non-delta requests, since no time frame is explicitly transmitted by the client, a server is

encouraged to delete and insert all the information stored in its backend, rather than updating it.

• Please note that the End date of an interval identifies the last day and night of the stay. Departure is

the morning of the day after the End date.

AlpineBits® 2018-10 page 20 of 85

• Please note that previous versions of AlpineBits® allowed some booking restrictions to be used in

FreeRooms (length of stay and day of arrival). This possibility has been removed with version 2014-

04 as these restrictions are better handled by RatePlans.

AlpineBits® 2018-10 page 21 of 85

4.2. GuestRequests: quote requests, booking reservations and cancellations

The typical use case for GuestRequests is a portal that collects quote requests, booking reservations

or booking cancellations from potential customers and stores them until a client (typically the software

used by a hotel) retrieves them.

In this case, the client sends a first request to obtain the information from the server about any requests,

reservation or cancellations with the parameter action set to the value OTA_Read:GuestRequests.

The server then responds with the requested information.

Successively the client sends a follow-up request to acknowledge having received the information, with

the parameter action set to the value OTA_NotifReport:GuestRequests.

Push Support

Starting with AlpineBits version 2018-10 it is possible to push the GuestRequest instead of polling them.

Please note that this functionality relies on a few arrangements that between the two parties that are not

negotiated through AlpineBits, namely the endpoint (URL) where the client can receive the pushed

GuestRequests, its credentials, etc. This behavior is described in section 4.2.6 and 4.2.7, but the XML

structure of the HotelReservation is the same as in the rest of this chapter.

4.2.1. First client request

The parameter action is set to the value OTA_Read:GuestRequests and the parameter request
must contain a OTA_ReadRQ document.

For the attributes HotelCode and HotelName the rules are the same as for room availability

notifications (section 4.1.1).

The element SelectionCriteria with the Start attribute is optional.

When given, the server will send only inquiries generated after the Start timestamp, regardless

whether the client has retrieved them before or not.

When omitted, the server will send all inquiries it has on record and that the client has not yet retrieved.

<?xml version="1.0" encoding="UTF-8"?>

<OTA_ReadRQ xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns="http://www.opentravel.org/OTA/2003/05"
 xsi:schemaLocation="http://www.opentravel.org/OTA/2003/05 OTA_ReadRQ.xsd"
 Version="1.001">

 <ReadRequests>
 <HotelReadRequest HotelCode="123" HotelName="Frangart Inn">
 <SelectionCriteria Start="2012-03-21T15:00:00+01:00"></SelectionCriteria>
 </HotelReadRequest>
 </ReadRequests>

</OTA_ReadRQ>

samples/GuestRequests-OTA_ReadRQ.xml

4.2.2 Server response

The server will send a response indicating the outcome of the request. The response is a

OTA_ResRetrieveRS document. Any of the four possible AlpineBits® server response outcomes

(success, advisory, warning or error) are allowed.

See Appendix A for details.

AlpineBits® 2018-10 page 22 of 85

In case of success, the OTA_ResRetrieveRS response will contain a single, empty Success element

followed by a ReservationsList element with zero or more HotelReservation elements

containing the requested information (zero elements indicate the server has no information for the client

at this point).

Each HotelReservation must have the attributes CreateDateTime (the timestamp the information

was collected by the portal). Furthermore the ResStatus attribute must be set. AlpineBits® expects it to

be one of the following four:

• Requested - this is a request for a quote

• Reserved - this is a booking reservation

• Modify - this is a booking modification

• Cancelled - this is a booking cancellation

The following example is a reservation (thus, ResStatus is Reserved). The documentation kit also

has an example of a quote request. A cancellation is discussed later.

First, consider the outer part of the OTA_ResRetrieveRS document:

<?xml version="1.0" encoding="UTF-8"?>

<OTA_ResRetrieveRS
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns="http://www.opentravel.org/OTA/2003/05"
 xsi:schemaLocation="http://www.opentravel.org/OTA/2003/05 OTA_ResRetrieveRS.xsd"
 Version="7.000">

 <Success/>

 <ReservationsList>

 <HotelReservation CreateDateTime="2012-03-21T15:00:00+01:00"
 ResStatus="Reserved">

 <!-- Type 14 -> Reservation -->
 <UniqueID Type="14" ID="6b34fe24ac2ff810"/>

 <RoomStays> <!-- stays, see below --> </RoomStays>

 <ResGuests> <!-- customer data, see below --> </ResGuests>

 <ResGlobalInfo> <!-- additional booking data, see below -->
</ResGlobalInfo>

 </HotelReservation>

 </ReservationsList>

</OTA_ResRetrieveRS>

 samples/GuestRequests-OTA_ResRetrieveRS-reservation.xml - outer part

Each HotelReservation contains a mandatory UniqueID element that the client can use to

recognize information it has already processed.

The UniqueID element must have the Type attribute set according the OTA Unique Id Type list (UIT).

The value must be consistent with the ResStatus attribute of the surrounding HotelReservation
element:

• For ResStatus = Requested, the Type must be 14 (Reservation)

• For ResStatus = Reserved, the Type must be 14 (Reservation)

AlpineBits® 2018-10 page 23 of 85

• For ResStatus = Modify, the Type must be 14 (Reservation)

• For ResStatus = Cancelled, the Type must be 15 (Cancellation)

The attribute ID is a free text field suitable for uniquely identifying the HotelReservation.

The actual data is then split into three parts: each HotelReservation contains the elements:

RoomStays, ResGuests and ResGlobalInfo (all mandatory) discussed in the following paragraphs.

First part: RoomStays.

The RoomStays element contains one or more RoomStay elements, each indicating a desired stay.

<RoomStays>

 <RoomStay>

 <RoomTypes>
 <RoomType RoomTypeCode="bigsuite" RoomClassificationCode="42"/>
 </RoomTypes>

 <RatePlans>
 <RatePlan RatePlanCode="123456-xyz">
 <Commission Percent="15"/>
 <!-- Code 1 -> All inclusive -->
 <MealsIncluded MealPlanIndicator="true" MealPlanCodes="1"/>
 </RatePlan>
 </RatePlans>

 <!-- 2 adults + 1 child + 1 child = 4 guests -->
 <GuestCounts>
 <!-- 2 adults -->
 <GuestCount Count="2"/>
 <!-- 1 child -->
 <GuestCount Count="1" Age="9"/>
 <!-- 1 child -->
 <GuestCount Count="1" Age="3"/>
 </GuestCounts>

 <TimeSpan Start="2012-01-01" End="2012-01-12"/>

 <Guarantee>
 <GuaranteesAccepted>
 <GuaranteeAccepted>
 <PaymentCard CardCode="VI"
 ExpireDate="1216">
 <CardHolderName>Otto Mustermann</CardHolderName>
 <CardNumber>
 <PlainText>4444333322221111</PlainText>
 </CardNumber>
 </PaymentCard>
 </GuaranteeAccepted>
 </GuaranteesAccepted>
 </Guarantee>

 <Total AmountAfterTax="299" CurrencyCode="EUR"/>

 </RoomStay>

</RoomStays>

 samples/GuestRequests-OTA_ResRetrieveRS-reservation.xml - RoomStay element

Each RoomStay element contains:

• one RoomType element (mandatory): see below for explanation;

AlpineBits® 2018-10 page 24 of 85

• one RatePlan element with:

◦ a RatePlanCode attribute (mandatory for reservations, optional for quote requests),

◦ zero or one Commission elements with either a Percent attribute (the commission in percent)

or a CommissionPayableAmount sub-element with attributes Amount and CurrencyCode,

◦ one MealsIncluded element (mandatory for reservations, optional for quote requests): the

MealsIncluded element must contain the MealPlanCodes attribute (values see below) and

must have the MealPlanIndicator attribute set to true;

• one GuestCounts element (mandatory) indicating the number of all adults (identified by one

GuestCount element with no Age attribute given) and the number of all children (identified by zero

or more GuestCount element with Age attribute given); of course all guests must be listed;

• one TimeSpan element (mandatory): see below for explanation;

• one PaymentCard element (only for reservations, optional) with:

◦ the mandatory attributes CardCode (the card issuer, two uppercase letters, such as "VI" for

Visa) and ExpireDate (four digits),

◦ the optional sub-element CardHolderName,

◦ the mandatory sub-element CardNumber (see below);

• one Total element (mandatory for reservations, optional for quote requests) containing the cost

after taxes the portal has displayed to the customer, both attributes AmountAfterTax and

CurrencyCode are required.

The CardNumber element is used to send a credit card number. The number can be send either as

plain text (but note the message transport is encrypted using HTTPS) or encrypted.

For the plain text case, the CardNumber element has no attributes and must contain a PlainText
sub-element holding the complete credit card number or its last four digits as in the example above.

For the encrypted case, the CardNumber element must not have any sub-elements and must have

attributes EncryptedValue (a string representation of the encrypted card number) and

EncryptionMethod (a string identifying the encryption method, e.g. "RSA-PKCSV2.2").

For reservations, the RoomType element is mandatory. Reservations must refer to a specific room

category (specified by RoomTypeCode). Quote requests should refer a specific room category

whenever possible (specified by the optional attribute RoomTypeCode) but may refer to a generic GRI

(specified by the optional attribute RoomClassificationCode) or may be completely open if the

RoomType element is present without attributes.

The RoomTypeCode must be identical to the InvTypeCode attribute used for room categories (see

section 4.1.1).

The RoomClassificationCode follows the OTA list "Guest Room Info" (GRI). It is used to loosely

classify the kind of guest room (42 means just "Room", 13 means "Apartments", 5 means "Pitches", etc.)

wished by the guest.

The optional RoomType attribute may be specified, see the definition of the RoomType attribute used for

the Inventory (see section 4.4.1) for the list of values defined by AlpineBits®. If the RoomType attribute is

specified, then also RoomClassificationCode must be present.

Regarding the MealPlanCodes attribute, AlpineBits® does not use the single Breakfast/Lunch/Dinner

booleans, but relies on the MealPlanCodes attribute only. The following codes (a subset of the full OTA

list) are allowed:

• 1 - all inclusive

• 3 - bed and breakfast

• 10 - full board

AlpineBits® 2018-10 page 25 of 85

• 12 - half board

• 14 - room only

The TimeSpan element deserves a more detailed explanation.

For reservations (ResStatus is Reserved or Modify), the arrival and departure date must be given

with the Start and End attributes of the TimeSpan element. No other attributes and no sub elements

must be present in TimeSpan.

For quote requests (ResStatus is Requested) the timespan can be given in the same way (i.e. using

the Start and End attributes) or it may be given as a window. In this case the TimeSpan element must

have the Duration attribute (encoded in ISO 8601) and the StartDateWindow sub element with

attributes EarliestDate and LatestDate which must be greater than EarliestDate indicating a

range of possible start dates.

Duration are given in nights, the form is thus always PxN where x is a number.

If multiple RoomStay elements are given, all the TimeSpan elements must have exactly the same

values.

As a special case, however, only for quote requests (ResStatus is Requested), it is possible to add

at most one optional RoomStay element that contains only the TimeSpan element. In this case, this

last TimeSpan is allowed to have different values (as a matter of fact, they must be different) and it

ought to be interpreted by the client as an alternative period with regard to the preceding RoomStay
element(s).

Second part: ResGuests.

Nested inside the ResGuests element is exactly one Customer element, providing the data of the

primary guest.

The Gender attribute can be Male, Female or Unknown. The BirthDate attribute follows ISO 8601.

The Language follows ISO 639-1 (two-letter lowercase language abbreviation). It identifies the language

to be used when contacting the customer.

These three attributes are all optional. However, it is recommended that at least gender and language

be specified (so the customer can be addressed properly).

AlpineBits® 2018-10 page 26 of 85

<ResGuests>
 <ResGuest>
 <Profiles>
 <ProfileInfo>
 <Profile>

 <Customer Gender="Male" BirthDate="1980-01-01" Language="de">

 <PersonName>
 <NamePrefix>Herr</NamePrefix>
 <GivenName>Otto</GivenName>
 <Surname>Mustermann</Surname>
 <NameTitle>Dr</NameTitle>
 </PersonName>

 <!-- Code 1 -> Voice -->
 <Telephone PhoneTechType="1" PhoneNumber="+4934567891"/>
 <!-- Code 3 -> Fax -->
 <Telephone PhoneTechType="3" PhoneNumber="+4934567892"/>
 <!-- Code 5 -> Mobile -->
 <Telephone PhoneTechType="5" PhoneNumber="+4934567893"/>

 <Email Remark="newsletter:yes">
otto.mustermann@example.com</Email>

 <Address Remark="catalog:yes">

 <AddressLine>Musterstraße 1</AddressLine>
 <CityName>Musterstadt</CityName>
 <PostalCode>1234</PostalCode>
 <CountryName Code="DE"/>

 </Address>

 </Customer>

 </Profile>
 </ProfileInfo>
 </Profiles>
 </ResGuest>
</ResGuests>

 samples/GuestRequests-OTA_ResRetrieveRS-reservation.xml - Customer element

The Customer element contains:

• one PersonName element with NamePrefix, GivenName (mandatory), Surname (mandatory)

and NameTitle

• zero or more Telephone elements with the optional PhoneTechType attribute: it indicates the

phone technology (1 → voice, 3 → fax, 5 → mobile per OTA)

• one optional Email element

• one optional Address element with the (all optional) elements AddressLine , CityName ,

PostalCode and CountryName with Code attribute; the Code attribute follows ISO 3166-1 alpha-2

(two-letter uppercase country codes)

Note that most elements and attributes under the ResGuests element are optional in the AlpineBits®

schema. It is, however, expected that as much contact information as possible is given.

The Email element may contain the attribute Remark having either values newsletter:yes or

newsletter:no indicating whether the customer does or does not wish to receive an email newsletter.

A missing Remark indicates the information is not known - for new customers this should be treated the

same way as if a newsletter:no was given (do not send a newsletter), while existing customer

records should not be updated.

AlpineBits® 2018-10 page 27 of 85

Analogously, the Address element may contain the attribute Remark having either values

catalog:yes or catalog:no indicating whether the customer does or does not wish to receive print

ads by mail. A missing Remark indicates the information is not known - for new customers this should be

treated the same way as if a catalog:no was given (do not send a mail), while existing customer

records should not be updated.

Third part: ResGlobalInfo.

AlpineBits® 2018-10 page 28 of 85

<ResGlobalInfo>
 <Comments>
 <Comment Name="included services">
 <ListItem ListItem="1" Language="de">Parkplatz</ListItem>
 <ListItem ListItem="2" Language="de">Schwimmbad</ListItem>
 <ListItem ListItem="3" Language="de">Skipass</ListItem>
 </Comment>

 <Comment Name="customer comment">
 <Text>
 Sind Hunde erlaubt?

 Mfg.
 Otto Mustermann.
 </Text>
 </Comment>
 </Comments>

 <CancelPenalties>
 <CancelPenalty>
 <PenaltyDescription>
 <Text>
 Cancellation is handled by hotel.
 Penalty is 50%, if canceled within 3 days before show, 100% otherwise.
 </Text>
 </PenaltyDescription>
 </CancelPenalty>
 </CancelPenalties>

 <HotelReservationIDs>
 <!-- ResID_Type 13 -> Internet Broker -->
 <HotelReservationID ResID_Type="13"
 ResID_Value="Slogan"
 ResID_Source="www.example.com"
 ResID_SourceContext="top banner" />
 </HotelReservationIDs>

 <Profiles>
 <ProfileInfo>
 <!-- ProfileType 4 -> Travel Agent -->
 <Profile ProfileType="4">
 <CompanyInfo>
 <CompanyName Code="123" CodeContext="ABC">
 ACME Travel Agency
 </CompanyName>
 <AddressInfo>
 <AddressLine>Musterstraße 1</AddressLine>
 <CityName>Flaneid</CityName>
 <PostalCode>12345</PostalCode>
 <CountryName Code="IT"/>
 </AddressInfo>
 <!-- Code 1 -> Voice -->
 <TelephoneInfo PhoneTechType="1" PhoneNumber="+391234567890"/>
 <Email>info@example.com</Email>
 </CompanyInfo>
 </Profile>
 </ProfileInfo>
 </Profiles>

 <BasicPropertyInfo HotelCode="123" HotelName="Frangart Inn"/>
</ResGlobalInfo>

 samples/GuestRequests-OTA_ResRetrieveRS-reservation.xml - ResGlobalInfo element

The ResGlobalInfo element contains:

• one Comment element (optional) with attribute Name set to included services containing the

AlpineBits® 2018-10 page 29 of 85

included services given as free text fields using ListItem elements (see below). In most cases the

AlpineBits® client software will just display this to a human hotel employee with no further processing

• one Comment element (optional) with attribute Name set to customer comment containing a single

Text element freely filled out by the customer and fed through unchecked by the portal

• only allowed for reservations, one PenaltyDescription element (optional) containing a

single Text element with no attributes that clearly states the cancellation policy the portal and the

hotel have previously agreed upon and the portal has communicated to the customer - the language

or languages of this text is chosen by the portal

• one or more HotelReservationID elements (optional) that can be used to transmit

miscellaneous IDs associated with the reservation the trading partners have agreed upon;

ResID_Type must be specified with a value from the OTA "Unique Id Type" list (UIT); the other

attributes, ResID_Value, ResID_Source and ResID_SourceContext are all optional;

historically, AlpineBits® has used these fields to handle internet campaign management: in this case

the agreement is to use a ResID_Type value of "13" (internet broker) and the three attributes

ResID_Value, ResID_Source and ResID_SourceContext identify, respectively, the campaign

name (Slogan in our example), the campaign source (www.example.com) and the campaign

marketing medium (top banner) following the scheme used by Google Analytics

• one optional Profile element with attribute ProfileType set to "4" with information about the

booking channel; nested under Profile, a CompanyName element with attributes Code and

CodeContext must be present, while the AddressInfo, TelephoneInfo and Email elements

are optional: these contain the same data as the equivalent fields in the customer part (note the

element names: AddressInfo and TelephoneInfo vs Address and Telephone in the customer

part - also different ordering - dictated by OTA)

• one mandatory BasicPropertyInfo element with the HotelCode and HotelName attributes

following the same rules of that used in the corresponding attributes in the request (see section

4.2.1).

Each ListItem element must have Language and ListItem attributes. At most one ListItem
element is allowed for each combination of Language and ListItem.

Modifications and Cancellations.

A booking modification (ResStatus is Modify) is identical to a booking reservation (ResStatus is

Reserved). However, for a booking modifications the client will recognize the UniqueId attribute and

act accordingly, updating the reservation instead of adding a new one.

Besides quote requests and booking reservations, also cancellations can be handled. For cancellations

the ResStatus is Cancelled as shown in the following example:

AlpineBits® 2018-10 page 30 of 85

<?xml version="1.0" encoding="UTF-8"?>

<OTA_ResRetrieveRS
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns="http://www.opentravel.org/OTA/2003/05"
 xsi:schemaLocation="http://www.opentravel.org/OTA/2003/05 OTA_ResRetrieveRS.xsd"
 Version="7.000">

 <Success/>

 <ReservationsList>

 <HotelReservation CreateDateTime="2012-03-21T15:00:00+01:00"
 ResStatus="Cancelled">

 <!-- Type 15 -> Cancellation -->
 <UniqueID Type="15" ID="c24e8b15ca469388"/>

 <!-- the following are optional for cancellations: -->
 <!--
 <RoomStays> ... </RoomStays>
 <ResGuests> ... </ResGuests>
 <ResGlobalInfo> ... </ResGlobalInfo>
 -->

 </HotelReservation>

 </ReservationsList>

</OTA_ResRetrieveRS>

samples/GuestRequests-OTA_ResRetrieveRS-cancellation.xml

Each HotelReservation must of course have the attributes CreateDateTime and ResStatus set

to Cancelled.

Of course, the element UniqueID is mandatory, again with mandatory attribute Type 15 and attribute

ID referring to the reservation that is being cancelled! Other reservation elements may be also sent.

4.2.3. Follow-up client request (acknowledgement)

A client, upon receiving a non-empty response to its first request (OTA_Read:GuestRequests), should

initiate another request, acknowledging or refusing the UniqueID values it got (referring to quotes,

reservations or cancellations).

For this follow-up request the parameter action is set to the value

OTA_NotifReport:GuestRequests and the parameter request must contain a

OTA_NotifReportRQ document.

For the refusal, a standard Warning element is used. The value of the attribute Type can be set to any

value of the OTA list "Error Warning Type" (EWT). The value 3 stands for "Biz rule". The attribute Code
can be set to any value present in the OTA list "Error Codes" (ERR). The value 450 stands for "Unable to

process". For the acknowledgments, the client uses again the HotelReservation element, one for

each ID it wishes to acknowledge.

Here is an example where a client refuses one reservation request and acknowledges three other

requests.

AlpineBits® 2018-10 page 31 of 85

<?xml version="1.0" encoding="UTF-8"?>

<OTA_NotifReportRQ xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns="http://www.opentravel.org/OTA/2003/05"
 xsi:schemaLocation="http://www.opentravel.org/OTA/2003/05 OTA_NotifReportRQ.xsd"
 Version="1.000">

 <Success/>

 <Warnings>
 <!-- refuse reservation with ID=f054bbd2f5ebab9 -->
 <Warning Type="3" Code="450" RecordID="f054bbd2f5ebab9">
 Unable to process reservation
 </Warning>
 </Warnings>

 <NotifDetails>
 <HotelNotifReport>
 <HotelReservations>

 <HotelReservation>
 <!-- ACK reservation with ID="6b34fe24ac2ff810" -->
 <UniqueID Type="14" ID="6b34fe24ac2ff810"/>
 </HotelReservation>

 <HotelReservation>
 <!-- ACK cancellation with ID="c24e8b15ca469388" -->
 <UniqueID Type="15" ID="c24e8b15ca469388"/>
 </HotelReservation>

 <HotelReservation>
 <!-- ACK quote request with ID="1000000000000001" -->
 <UniqueID Type="14" ID="1000000000000001"/>
 </HotelReservation>

 </HotelReservations>
 </HotelNotifReport>
 </NotifDetails>

</OTA_NotifReportRQ>

samples/GuestRequests-OTA_ReadRQ-ack.xml

The following rules apply to acknowledgements:

• For every UniqueID, the server must remember whether or not the client has acknowledged it yet.

• It is a client’s responsibility to send the acknowledgments - if it doesn’t, it must be prepared to deal

with duplicates the next time it queries the server.

Here is a sample sequence of messages exchanged between a client and a server:

time client request server response comment

08:00 action = OTA_Read:GuestRequests;
request = OTA_Read with SelectionCriteria
Start today 00:00

OTA_ResRetrieveRS with
UniqueID=1 (Reservation) and
UniqueID=2 (Request)

the server answers with today’s
two requests (1 and 2)

08:01 action = OTA_NotifReport:GuestRequests;
request = OTA_NotifReportRQ with
UniqueID=1

OTA_NotifReportRS Success server knows the client got 1, it
will not be sent again

09:00 action = OTA_Read:GuestRequests;
request = OTA_Read

OTA_ResRetrieveRS with
UniqueIDs 2 and 3 (Request)

the client wishes to read all new
requests, 1 is not sent (since it
was ack’ed), 2 is sent again and
3 is sent because it’s new

10:00 action = OTA_Read:GuestRequests;
request = OTA_Read

OTA_ResRetrieveRS with
UniqueIDs 2 and 3 (Request)

same server response as at
09:00 because 2 and 3 were not
ack’ed

AlpineBits® 2018-10 page 32 of 85

time client request server response comment

10:01 action = OTA_NotifReport:GuestRequests;
request = OTA_NotifReportRQ with
UniqueID=2, 3

OTA_NotifReportRS Success server now knows the client got
all three

11:00 action = OTA_Read:GuestRequests;
request = OTA_Read with SelectionCriteria
Start today 00:00

OTA_ResRetrieveRS with
UniqueIDs 1, 2 and 3 (Request)

the SelectionCriteria Start
overrides the fact that all three
guest requests had already been
ack’ed, so the server sends all
three again

4.2.4. Follow-up server response

The server will send a response indicating the outcome of the request. The response is a

OTA_NotifReportRS document. Any of the four possible AlpineBits® server response outcomes

(success, advisory, warning or error) are allowed.

See Appendix A for details.

4.2.5. Implementation tips and best practice

The attribute RatePlanCode is mandatory for reservations and is meant to refer a reservation to the

originating RatePlan. If reservations are not originated from an AlpineBits® Rateplan this information may

be unavailable. In this case it is recommended to set the value of the RatePlanCode attribute to the

string "Unknown" (with a capital "U", please note that OTA schemas do not allow an empty value for this

attribute).

If a non-standard MealsIncluded has to be transmitted, consider using the closest standard

MealsIncluded combination. This needs prior agreement among the parts, which is not covered by

AlpineBits®. For example in South-Tyrol some hotels offer "Dreiviertel-Pension" (half board plus

afternoon snack, hence a non-standard MealsIncluded combination) to their guests. This may be

transmitted as half board, since "Dreiviertel-Pension" replaces half board for these hotels.

The value of the PhoneNumber attribute (element Telephone) should contain the standard

international format (as in +<country code><phone number>) whenever possible.

Some guidelines on how to fill the fields in the HotelReservationID and Profile / CompanyInfo
elements are provided here in order to allow easier grouping of the data coming from different servers.

The attributes of the HotelReservationID attributes can be mapped to the attributes used for internet

marketing like in the following table:

utm_source ResID_Source

utm_medium ResID_SourceContext

utm_content not present in AlpineBits®

utm_campaign ResID_Value

We can then distinguish different use cases - here are some examples:

1. Request or reservation via homepage

a. Direct (user types domain into browser address bar)

ResID_Source (utm_source) = direct

ResID_SourceContext (utm_medium) =

ResID_Value (utm_campaign) =

Profile / CompanyInfo (travel agent / booking channel) = homepage

b. Referral link to hotel site from other website

ResID_Source (utm_source) = otherwebsite.com

ResID_SourceContext (utm_medium) = referral

ResID_Value (utm_campaign) =

AlpineBits® 2018-10 page 33 of 85

Profile / CompanyInfo (travel agent / booking channel) = homepage

c. Referral link to hotel site from portal website with campaign infos

ResID_Source (utm_source) = portalwebsite.com

ResID_SourceContext (utm_medium) = referral (or exact medium type of portal, e.g. "banner",

"membership", "toplinks")

ResID_Value (utm_campaign) = [campaign-name]

Profile / CompanyInfo (travel agent / booking channel) = homepage

d. Search engine organic

ResID_Source (utm_source) = google.com

ResID_SourceContext (utm_medium) = organic_search

ResID_Value (utm_campaign) =

Profile / CompanyInfo (travel agent / booking channel) = homepage

e. Search engine paid (e.g. Google Adwords)

ResID_Source (utm_source) = google.com

ResID_SourceContext (utm_medium) = cpc

ResID_Value (utm_campaign) = [campaign-name]

Profile / CompanyInfo (travel agent / booking channel) = homepage

f. Social media content link (e.g. Facebook)

ResID_Source (utm_source) = facebook.com

ResID_SourceContext (utm_medium) = social_media

ResID_Value (utm_campaign) = [facebook-post]

Profile / CompanyInfo (travel agent / booking channel) = homepage

g. Social media paid (e.g. Facebook Ads)

ResID_Source (utm_source) = facebook.com

ResID_SourceContext (utm_medium) = cpc

ResID_Value (utm_campaign) = [campaign-name]

Profile / CompanyInfo (travel agent / booking channel) = homepage

h. Newsletter

ResID_Source (utm_source) = newsletter-[company-name]

ResID_SourceContext (utm_medium) = email

ResID_Value (utm_campaign) = [newsletter-name] (e.g. NL 09/2017)

Profile / CompanyInfo (travel agent / booking channel) = homepage

i. QR code in printed magazine

ResID_Source (utm_source) = [magazine-name] (e.g. Bergwelten)

ResID_SourceContext (utm_medium) = qr_code

ResID_Value (utm_campaign) = [magazine-name-and-issue] (e.g. Bergwelten 08/2017)

Profile / CompanyInfo (travel agent / booking channel) = homepage

2. Request or reservation via landing page

a. Bookings/enquiries on landing pages from Google Adwords

ResID_Source (utm_source) = google.com

ResID_SourceContext (utm_medium) = cpc

ResID_Value (utm_campaign) = [campaign-name]

Profile / CompanyInfo (travel agent / booking channel) = landingpage

b. Bookings/enquiries on landing pages from portal links

ResID_Source (utm_source) = portalwebsite.com

ResID_SourceContext (utm_medium) = referral (or exact medium type of portal, e.g. "banner",

"membership", "toplinks")

ResID_Value (utm_campaign) = [campaign-name]

Profile / CompanyInfo (travel agent / booking channel) = landingpage

3. Reservation on a booking platform

AlpineBits® 2018-10 page 34 of 85

a. Bookings on booking portal (e.g. Booking.com)

ResID_Source (utm_source) =

ResID_SourceContext (utm_medium) =

ResID_Value (utm_campaign) =

Profile / CompanyInfo (travel agent / booking channel) = [booking portal name] (e.g.

booking.com)

b. Bookings/enquiries on portals (e.g. suedtirolerland.it)

ResID_Source (utm_source) = [portal name] (e.g. suedtirolerland.it)

ResID_SourceContext (utm_medium) =

ResID_Value (utm_campaign) =

Profile / CompanyInfo (travel agent / booking channel) = [portal operator] (e.g. Peer.travel)

4.2.6. Requests Push client request

Starting with AlpineBits version 2018-10, a new capability was added

(action_OTA_HotelResNotif_GuestRequests) to allow a push mechanism for the GuestRequest.

If the capability is exposed, the Client is capable of acting as an AlpineBits Server, and the Server is

capable of acting as an AlpineBits Client. This means that a few arrangements between the two parties

have to be made, and those are not negotiated through AlpineBits, namely the endpoint (URL) where the

client can receive the pushed GuestRequests, its credentials, etc.

The parameter action is set to the value OTA_HotelResNotif:GuestRequests and the parameter

request must contain a OTA_HotelResNotifRQ document.

Please note that this message does not allow to specify a HotelCode or HotelName in the root

element, this information is however provided in the corresponding attributes within each Request’s

BasicPropertyInfo element. All the Request exchanged with a single message must refer to the

same Hotel.

The request must contain a single HotelReservations element with zero or more

HotelReservation elements containing the requested information (zero elements indicate the client

has no information for the server, but the Client should not initiate a transfer in this case). As for the

content of the HotelReservation element, refer to section 4.2.2.

All the GuestRequests described above (e.g. Booking Requests, Quote Requests, Cancellations) can be

pushed by using this mechanism.

4.2.7 Requests Push server response

The server will send a response indicating the outcome of the request. The response is a

OTA_HotelResNotifRS document. Any of the four possible AlpineBits® server response outcomes

(success, advisory, warning or error) are allowed.

See Appendix A for details.

In case of success, the OTA_HotelResNotifRS response will contain a single, empty Success
element followed by a HotelReservations element with zero or more HotelReservation
elements. Each HotelReservation element must contain only a single UniqueID element with the

Type and [xml_attribute_name]#ID" attributes referring to one of the GuestRequests the Client sent

(quotes, reservations or cancellations).

Each request that could not be processed must be listed in a Warning element, where the RecordID
attribute refers to the request ID and Type and Code refer to the reason of the refusal.

AlpineBits® 2018-10 page 35 of 85

<?xml version="1.0" encoding="UTF-8"?>

<OTA_HotelResNotifRS xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns="http://www.opentravel.org/OTA/2003/05"
 xsi:schemaLocation="http://www.opentravel.org/OTA/2003/05
OTA_HotelResNotifRS.xsd"
 Version="1.000">

 <Success/>

 <Warnings>
 <!-- refuse reservation with ID=f054bbd2f5ebab9 -->
 <Warning Type="3" Code="450" RecordID="f054bbd2f5ebab9">Unable to process
reservation</Warning>
 </Warnings>

 <HotelReservations>

 <HotelReservation>
 <!-- ACK reservation with ID="6b34fe24ac2ff810" -->
 <UniqueID Type="14" ID="6b34fe24ac2ff810"/>
 </HotelReservation>

 <HotelReservation>
 <!-- ACK cancellation with ID="c24e8b15ca469388" -->
 <UniqueID Type="15" ID="c24e8b15ca469388"/>
 </HotelReservation>

 <HotelReservation>
 <!-- ACK quote request with ID="1000000000000001" -->
 <UniqueID Type="14" ID="1000000000000001"/>
 </HotelReservation>

 </HotelReservations>

</OTA_HotelResNotifRS>

samples/GuestRequests-OTA_HotelResNotifRS-reservation-push.xml

AlpineBits® 2018-10 page 36 of 85

4.3. SimplePackages: package availability notifications (removed)

This feature has been removed with version 2017-10.

SimplePackages can be still used by servers and clients supporting previous versions of the standard

(from 2012-05 to 2015-07b).

AlpineBits® 2018-10 page 37 of 85

4.4. Inventory: room category information

The Inventory request allows up to four values for the action parameter (depending on the server

exposed capabilities):

• OTA_HotelDescriptiveContentNotif:Inventory indicates the client wishes to define a room

category, send its basic description and optionally provide a list of specific rooms for each category

(see section Inventory/Basic (push))

• OTA_HotelDescriptiveInfo:Inventory indicates the client wishes to retrieve the information

about room category, basic description and the list of specific rooms (see section Inventory/Basic

(pull))

• OTA_HotelDescriptiveContentNotif:Info indicates the client wishes to send additional

descriptive content (see section Inventory/HotelInfo (push))

• OTA_HotelDescriptiveInfo:Info indicates the client wishes to retrieve the additional

descriptive content (see section Inventory/HotelInfo (pull))

4.4.1. Inventory/Basic (push) client request

The parameter request contains an OTA_HotelDescriptiveContentNotifRQ document.

Each document contains one HotelDescriptiveContent element. For the attributes HotelCode
and HotelName the rules are the same as for room availability notifications (section 4.1.1). Note that

information about only one hotel per message can be transmitted.

Nested inside HotelDescriptiveContent, a FacilityInfo element contains a list of zero or more

GuestRoom elements. There are two distinct kinds of GuestRoom elements:

• the heading one is used to define a room category and its basic description (the category is

identified by the attribute Code),

• the following ones list specific rooms for each category (identified by the attribute Code).

More than one category can be transmitted. That means a category defining sequence of one-heading-

GuestRoom-element plus zero or more following- GuestRoom-elements can be repeated for each

category.

Sending zero GuestRoom elements (meaning an empty GuestRooms element) will remove all room

categories for the given hotel.

Following is the global structure of an example of such a document:

AlpineBits® 2018-10 page 38 of 85

<OTA_HotelDescriptiveContentNotifRQ
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns="http://www.opentravel.org/OTA/2003/05"
 xsi:schemaLocation="http://www.opentravel.org/OTA/2003/05
 OTA_HotelDescriptiveContentNotifRQ.xsd"
 Version="8.000">

<HotelDescriptiveContents>
 <HotelDescriptiveContent HotelCode="123" HotelName="Frangart Inn">
 <FacilityInfo>
 <GuestRooms>

 <!-- the heading GuestRoom element is used to define a category
 and its basic description -->

 <GuestRoom Code="DZ" MaxOccupancy="2" MinOccupancy="1" MaxChildOccupancy="1">
 <!-- ... see below ... -->
 </GuestRoom>

 <!-- the follow-up GuestRoom elements list the specific
 rooms in the category -->

 <GuestRoom Code="DZ">
 <TypeRoom RoomID="101"/>
 </GuestRoom>

 <GuestRoom Code="DZ">
 <TypeRoom RoomID="102"/>
 </GuestRoom>

 </GuestRooms>
 </FacilityInfo>
 </HotelDescriptiveContent>
 </HotelDescriptiveContents>

</OTA_HotelDescriptiveContentNotifRQ>

samples/Inventory-OTA_HotelDescriptiveContentNotifRQ.xml - outer part

The heading GuestRoom element, used to define a room category and its basic description, contains the

following attributes:

• Code: mandatory, identifies the category.

• MinOccupancy: mandatory, sets the minimum number of guests allowed for this room category.

• MaxOccupancy: mandatory, sets the maximum number of guests allowed for this room category.

• MaxChildOccupancy: optional, must be 0 ≤ MaxChildOccupancy ≤ MaxOccupancy. This

attribute can be used to influence the computation of the total cost of the stay in the presence of

children (see section 4.5 under "Computing the cost of a stay" for details). Note that this attribute

cannot be used to disallow children in a stay. This attribute may only be used if the capability

OTA_HotelDescriptiveContentNotif_Inventory_occupancy_children is announced by

the server.

• ID: optional, used for updating room category codes (see remarks at the end of this section)

The heading GuestRoom element also contains the following sub-elements:

• TypeRoom: mandatory element with the attributes:

◦ StandardOccupancy (mandatory),

◦ RoomClassificationCode (mandatory) to classify the kind of guest room following the OTA

list "Guest Room Info" (GRI) - 42 means just "Room", 13 means "Apartments", "5" means

"Pitches", etc…

◦ RoomType (optional) to allow a finer classification of the guest accommodation (see below)

AlpineBits® 2018-10 page 39 of 85

◦ Size (optional)

• Amenities: optional element containing a list of Amenity elements, each indentified by the

mandatory attribute RoomAmenityCode following the OTA list "Room Amenity Type" (RMA).

• MultimediaDescription: one or more elements with an InfoCode attribute with certain values

(a subset of the OTA list "Information type" (INF)):

◦ exactly one MultimediaDescription element with attribute InfoCode = 25 (Long name)

indicating a title must be present,

◦ at most one MultimediaDescription element with attribute InfoCode = 1 (Description)

may be present and

◦ at most one MultimediaDescription element with attribute InfoCode = 23 (Pictures) may

be present.

Regarding the optional attribute RoomType, its allowed values are defined by AlpineBits® as follows:

• For rooms: RoomType value 1 (should only be used when RoomClassificationCode is 42)

• For apartments: RoomType value 2 (should only be used when RoomClassificationCode is 13)

• For mobile homes: RoomType value 3 (should only be used when RoomClassificationCode is

13)

• For bungalows: RoomType value 4 (should only be used when RoomClassificationCode is 13)

• For holiday homes: RoomType value 5 (should only be used when RoomClassificationCode is

13)

• For camping grounds (place for vehicles in a camping): RoomType value 6 (should only be used

when RoomClassificationCode is 5)

• For pitches (place for tents in a camping): RoomType value 7 (should only be used when

RoomClassificationCode is 5)

• For camping grounds/pitches (place for either tents or vehicles in a camping): RoomType value 8
(should only be used when RoomClassificationCode is 5)

• For resting places (beds in shared rooms, like hostels or mountain huts): RoomType value 9 (should

only be used when RoomClassificationCode is 42)

Here is an example of such a heading GuestRoom element:

AlpineBits® 2018-10 page 40 of 85

<GuestRoom Code="DZ" MaxOccupancy="2" MinOccupancy="1" MaxChildOccupancy="1">

 <!-- RoomClassificationCode = "42" means Room, 13 Apartment, see OTA table GRI -->
 <TypeRoom StandardOccupancy="2" RoomClassificationCode="42"/>

 <Amenities>
 <!-- 26 means Crib, see OTA table RMA -->
 <Amenity RoomAmenityCode="26"/>
 </Amenities>

 <MultimediaDescriptions>

 <MultimediaDescription InfoCode="25">
 <!-- ... -->
 </MultimediaDescription>

 <MultimediaDescription InfoCode="1">
 <!-- ... -->
 </MultimediaDescription>

 <MultimediaDescription InfoCode="23">
 <!-- ... -->
 </MultimediaDescription>

 </MultimediaDescriptions>

</GuestRoom>

samples/Inventory-OTA_HotelDescriptiveContentNotifRQ.xml - a heading GuestRoom element

The MultimediaDescription elements follow these rules:

• a MultimediaDescription element with attribute InfoCode = 25 or 1 must contain only a single

TextItem element

• a MultimediaDescription element with attribute InfoCode = 23 contains only ImageItem
elements (one or more).

Here is an example:

AlpineBits® 2018-10 page 41 of 85

<MultimediaDescriptions>

 <MultimediaDescription InfoCode="25">
 <TextItems>
 <TextItem>
 <Description TextFormat="PlainText" Language="en">
 Double room</Description>
 <Description TextFormat="PlainText" Language="de">
 Doppelzimmer</Description>
 <Description TextFormat="PlainText" Language="it">
 Camera doppia</Description>
 </TextItem>
 </TextItems>
 </MultimediaDescription>

 <MultimediaDescription InfoCode="1">
 <TextItems>
 <TextItem>
 <Description TextFormat="PlainText" Language="en">
 Description of the double room.</Description>
 <Description TextFormat="PlainText" Language="de">
 Doppelzimmer Beschreibung.</Description>
 <Description TextFormat="PlainText" Language="it">
 Descrizione della camera doppia.</Description>
 </TextItem>
 </TextItems>
 </MultimediaDescription>

 <MultimediaDescription InfoCode="23">
 <ImageItems>
 <!-- 6 means guest room, see OTA table PIC -->
 <ImageItem Category="6">
 <ImageFormat CopyrightNotice="Copyright notice 2015">
 <URL>http://www.example.com/image.jpg</URL>
 </ImageFormat>
 <Description TextFormat="PlainText" Language="en">
 Picture of the room</Description>
 <Description TextFormat="PlainText" Language="de">
 Zimmerbild</Description>
 <Description TextFormat="PlainText" Language="it">
 Immagine della stanza</Description>
 </ImageItem>
 </ImageItems>
 </MultimediaDescription>

<MultimediaDescriptions>

samples/Inventory-OTA_HotelDescriptiveContentNotifRQ.xml - MultimediaDescription elements

TextItems contains a TextItem element, which must contain one or more Description elements,

each with the mandatory attributes TextFormat and Language.

The following rules hold:

• The attribute TextFormat is set to PlainText or HTML and the attribute Language is set to a two-

letter lowercase language abbreviation according to ISO 639-1. At most one Text element is

allowed for each combination of Language and TextFormat.

• The presence of a TextItem element with TextFormat set to HTML is intended as rich text

alternative of a TextItem element with TextFormat set to PlainText of the same Language
and makes the latter mandatory.

• Please note that an AlpineBits® server is explicitly allowed to filter, shorten or even skip the HTML

content, therefore the usage of TextItem elements with TextFormat set to HTML is not

recommended but left as an option for implementers that absolutely need it.

AlpineBits® 2018-10 page 42 of 85

ImageItems contains a list of one or more ImageItem elements with mandatory Category attribute

following the OTA list "Picture Category Code" (PIC). Typical values are 6 (Guest Room) and 17 (Map)

but the whole table is allowed. The ImageItem element contains a single, mandatory ImageFormat
element with the optional attribute CopyrightNotice. Inside, a single mandatory element URL, holds

the URL where the picture can be retrieved as its value. Zero or more Description elements follow,

under the same rules outlined above for descriptions contained in the element TextItem. Images

should be processed by the server in the order they are submitted (i.e. the order used to show the

pictures the to end users should be consistent with the one sent by the client).

The following GuestRoom element lists all the rooms belonging to a category, as we’ve seen in the first

code sample, repeated here:

 <!-- the follow-up GuestRoom elements list the specific
 rooms in the category -->

 <GuestRoom Code="DZ">
 <TypeRoom RoomID="101"/>
 </GuestRoom>

 <GuestRoom Code="DZ">
 <TypeRoom RoomID="102"/>
 </GuestRoom>

samples/Inventory-OTA_HotelDescriptiveContentNotifRQ.xml - part showing follow-up GuestRoom
elements

Following GuestRoom elements have a mandatory Code attribute that identifies the category the

specific room belongs to. No further attributes are allowed.

They also have a mandatory sub-element TypeRoom with a mandatory attribute RoomID that identifies

the specific room. No further elements or attributes are allowed, included (but not limited to) the

MultimediaDescription element.

If a server sets the capability OTA_HotelDescriptiveContentNotif_Inventory_use_rooms, a

client must send the full list of rooms and the server must store it.

Otherwise, if a server does not set that capability, a client might or might not send the room list. A server

that has no use for the room list is then free to discard it upon receiving them, but must do so silently

(i.e. without returning errors or warnings).

Some remarks.

Note that AlpineBits® does not support deltas for Inventory/Basic (push) requests. After successfully

processing a request, any previously data sent via an Inventory/Basic (push) request (and only the data

sent via an Inventory/Basic (push) request) must be removed.

Moreover, all Inventory/HotelInfo, FreeRooms or RatePlans data that refer to any now missing room

categories must be considered outdated.

Also note that categories in inventories should refer to physical inventories. They must not be used as

logical inventories. For example it is not allowed to introduce an inventory with code suite-x and one

withcode suite-x-special-offer for the purpose of modeling two different products from the same

inventory (RatePlans will take care of that).

It happens that hotels change room category codes (for whatever reason). It is therefore important that

these changes are communicated to the server in order to avoid losing any data linked to the renamed

categories. The old code of the room category can be transferred via the attribute ID of the heading

GuestRoom elements.

Here is an example:

AlpineBits® 2018-10 page 43 of 85

 <HotelDescriptiveContent HotelCode="123" HotelName="Frangart Inn">
 <FacilityInfo>
 <GuestRooms>

 <!-- "single", formerly known as "EZ" -->

 <GuestRoom Code="single" MaxOccupancy="2" MinOccupancy="1" ID="EZ">
 <TypeRoom StandardOccupancy="2" RoomClassificationCode="42"/>
 </GuestRoom>

 <!-- "double", formerly known as "DZ" -->

 <GuestRoom Code="double" MaxOccupancy="2" MinOccupancy="1" ID="DZ">
 <TypeRoom StandardOccupancy="2" RoomClassificationCode="42"/>
 </GuestRoom>

 </GuestRooms>
 </FacilityInfo>
 </HotelDescriptiveContent>

The server will first look for a category "single". If that’s found, the server will silently ignore the ID

attribute and replace the data it had on record for "single".

If "single" is not found, the server will look for a category "EZ". If that’s found, the server must rename it

to "single". If "EZ" is not found either, the server will just store the new category "single".

This makes sure that "EZ" is renamed to "single", without causing problems if "EZ" wasn’t known in the

first place or in case the renaming has already happened.

The same procedure is to be applied for "DZ" renamed to "double".

4.4.2. Inventory/Basic (push) server response

The server will send a response indicating the outcome of the request. The response is a

OTA_HotelDescriptiveContentNotifRS document. Any of the four possible AlpineBits® server

response outcomes (success, advisory, warning or error) are allowed.

See Appendix A for details.

4.4.3. Inventory/Basic (pull) client request

The parameter request contains an OTA_HotelDescriptiveInfoRQ document.

Analogous to the Inventory/Basic (push) request, a client can send a pull request to query the basic

data the server has stored about a hotel.

Here is such a client request:

<OTA_HotelDescriptiveInfoRQ xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns="http://www.opentravel.org/OTA/2003/05"
 Version="3.000">

 <HotelDescriptiveInfos>
 <HotelDescriptiveInfo HotelCode="123" HotelName="Frangart Inn"/>
 </HotelDescriptiveInfos>

</OTA_HotelDescriptiveInfoRQ>

samples/Inventory-OTA_HotelDescriptiveInfoRQ-basicpullRQ.xml

As expected, the document must contain one HotelDescriptiveInfo element with attributes

HotelCode and HotelName that follow the same rules as for room availability notifications (section

AlpineBits® 2018-10 page 44 of 85

4.1.1). Again, information about only one hotel per message can be queried.

Please note that the content of the XML message is identical, both for Inventory/Basic (pull) and

Inventory/HotelInfo (pull), but the action is used by the server to distinguish the two requests.

4.4.4. Inventory/Basic (pull) server response

The server will send a response indicating the outcome of the request. The response is a

OTA_HotelDescriptiveInfoRS document. Any of the four possible AlpineBits® server response

outcomes (success, advisory, warning or error) are allowed. See Appendix A for details.

In case of a successful outcome, the Success element is followed by a HotelDescriptiveContent
element with the information about the hotel.

Here is such a server response. The complete file is in the developer kit.

<OTA_HotelDescriptiveInfoRS xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns="http://www.opentravel.org/OTA/2003/05"
 Version="3.000">

 <Success/>
 <HotelDescriptiveContents>
 <HotelDescriptiveContent HotelCode="123" HotelName="Frangart Inn">

 <!-- ... see file in development kit ... -->

 </HotelDescriptiveContents>
 </HotelDescriptiveContents>

</OTA_HotelDescriptiveInfoRS>

samples/Inventory-OTA_HotelDescriptiveInfoRS-basicpullRS.xml - outer part

4.4.5. Inventory/HotelInfo (push) client request

The parameter request contains an OTA_HotelDescriptiveContentNotifRQ document.

The purpose of this request is twofold:

1. A given client could have information that is technically fundamental (data transmitted via

Inventory/Basic (push)), but may lack additional content such as inspiring pictures of the rooms. The

present Inventory/HotelInfo (push) request introduces the possibility for the server to accept

additional descriptive content from one or multiple clients, while still having a single reputable

source for the basic information. (Technically speaking a server may accept basic data from multiple

clients, but it is highly discouraged to do so to prevent inconsistencies.)

2. Moreover many AlpineBits® members have expressed the need to transmit all kind of additional

master data about hotels, such as (but not limited to):

◦ hotel type / category

◦ address info

◦ contact info

◦ short/long descriptions

◦ logos, seasonal pictures, gallery pictures

◦ hotel amenities

◦ check-in / check-out times

◦ accepted payment methods / deposit

◦ ratings info

◦ facilities info

AlpineBits® 2018-10 page 45 of 85

Using the Inventory/HotelInfo (push) request it is therefore possible to send additional data that is

allowed by OTA under the HotelDescriptiveContent element.

Each message must contain one HotelDescriptiveContent element with attributes HotelCode
and HotelName that follow the same rules as for room availability notifications (section 4.1.1). Again,

information about only one hotel per message can be transmitted.

AlpineBits® allows the following child-element right below HotelDescriptiveContent:

• HotelInfo: can hold any content allowed by OTA,

• FacilityInfo: is a subset of the FacilityInfo in Inventory/Basic (push) messages:

◦ GuestRoom elements may only have a Code attribute and may only contain

MultimediaDescription sub-elements;

◦ the MultimediaDescription elements must not have the InfoCode attribute and just

contain a single ImageItems element with a list of ImageItem elements

• Policies: can hold any content allowed by OTA,

• AffiliationInfo: can hold any content allowed by OTA,

• ContactInfos: is used to transmit URIs where the lodging structure has a presence (like social

networks, review aggregators, etc.) and is defined below.

The restriction on FacilityInfo is meant to make sure that Inventory/HotelInfo (push) message are

only used to send additional descriptive content for room categories. It is supposed to be used in

addition (not instead of) Inventory/Basic (push).

ContactInfos: Point of presence of the lodging structure

Given the rising importance of social networks, reviews aggregator websites and chat/messaging

platforms, the following use case has been defined in AlpineBits® for the ContactInfos element and its

descendants:

• at most one ContactInfo may optionally be specified, with the attribute Location that must have

value 6 ("Hotel direct contact" according to CON codelist)

• inside this element, a single URLs must be present, containing one or more URL

• each URL must have the ID attribute specified as described below, the content of the element must

be a valid URI

• despite its name, the content of URL may be any URI, so besides http(s) urls, also other schemes

might be specified. URNs are allowed as well and in this case the schema must be id.

AlpineBits® defines some values for the ID attribute that should be recognized by servers and clients:

• TRUSTYOU: for the lodging structure’s presence on trustyou.com

• TRIPADVISOR: for the lodging structure’s presence on tripadvisor.com

• TWITTER: for the lodging structure’s presence on twitter.com

• FACEBOOK: for the lodging structure’s presence on facebook.com

• INSTAGRAM: for the lodging structure’s presence on instagram.com

• YOUTUBE: for the lodging structure’s presence on youtube.com

Partners are allowed to define further values but the value of the attribute must be all uppercase.

The following example shows a possible use case of this message:

AlpineBits® 2018-10 page 46 of 85

<ContactInfos>
 <ContactInfo Location="6">
 <URLs>
 <URL ID="FACEBOOK">https://www.facebook.com/alpinebits/</URL>
 <URL ID="TWITTER">https://twitter.com/hashtag/alpinebits</URL>
 <URL ID="TRUSTYOU">id:12345678-1nvalid</URL>
 <URL ID="YOUTUBE">https://www.youtube.com/user/AlpineBits</URL>
 </URLs>
 </ContactInfo>
</ContactInfos>

Given the somewhat experimental nature of the Inventory/HotelInfo (push) request type, future

versions of AlpineBits® might further restrict or clarify the acceptable sub-elements of

HotelDescriptiveContent.

The development kit contains an example in the samples folder that documents only the

FacilityInfo element; a non-normative example of a possible usage of all the other nodes mentioned

above is available in the samples-contrib folder and is not fully copied here due to the limited space:

<OTA_HotelDescriptiveContentNotifRQ
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns="http://www.opentravel.org/OTA/2003/05"
 xsi:schemaLocation="http://www.opentravel.org/OTA/2003/05
 OTA_HotelDescriptiveContentNotifRQ.xsd"
 Version="8.000">

 <HotelDescriptiveContents>
 <HotelDescriptiveContent HotelCode="123" HotelName="Frangart Inn" >

 <!-- ... see file in development kit ... -->

 </HotelDescriptiveContent>
 </HotelDescriptiveContents>

</OTA_HotelDescriptiveContentNotifRQ>

samples/Inventory-OTA_HotelDescriptiveContentNotifRQ-hotelinfo.xml - outer part

Note that AlpineBits® does not support deltas for Inventory/HotelInfo (push) requests. Data sent in a

Inventory/HotelInfo (push) request replaces all data sent in a previous Inventory/HotelInfo (push) request

(although the server will of course not replace any Inventory/Basic (push) data it has on record). If

multiple clients are providing Inventory/HotelInfo (push) data, it is up to the server implementation to

guarantee the integrity of the data.

If a server receives Inventory/HotelInfo (push) data with additional descriptive content regarding

unknown room categories it must react accordingly (i.e. return a warning). However, a message that has

additional descriptive regarding only some of the categories the server has on record, will not trigger a

warning response. It is very well possible that some room categories do not have additional descriptive

content.

4.4.6. Inventory/HotelInfo (push) server response

The server will send a response indicating the outcome of the request. The response is a

OTA_HotelDescriptiveContentNotifRS document. Any of the four possible AlpineBits® server

response outcomes (success, advisory, warning or error) are allowed.

See Appendix A for details.

AlpineBits® 2018-10 page 47 of 85

4.4.7. Inventory/HotelInfo (pull) client request

The parameter request contains an OTA_HotelDescriptiveInfoRQ document.

Analogous to the Inventory/HotelInfo (push) request, a client can send a pull request to query the

additional data the server has stored about a hotel.

Here is such a client request:

<OTA_HotelDescriptiveInfoRQ xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns="http://www.opentravel.org/OTA/2003/05"
 Version="3.000">

 <HotelDescriptiveInfos>
 <HotelDescriptiveInfo HotelCode="123" HotelName="Frangart Inn"/>
 </HotelDescriptiveInfos>

</OTA_HotelDescriptiveInfoRQ>

samples/Inventory-OTA_HotelDescriptiveInfoRQ-hotelinfo.xml

As expected, the document must contain one HotelDescriptiveInfo element with attributes

HotelCode and HotelName that follow the same rules as for room availability notifications (section

4.1.1). Again, information about only one hotel per message can be queried.

Please note that the content of the XML message is identical both for Inventory/Basic (pull) and

Inventory/HotelInfo (pull), but the action is different and used to distinguish the two requests.

4.4.8. Inventory/HotelInfo (pull) server response

The server will send a response indicating the outcome of the request. The response is a

OTA_HotelDescriptiveInfoRS document. Any of the four possible AlpineBits® server response

outcomes (success, advisory, warning or error) are allowed. See Appendix A for details.

In case of a successful outcome, the Success element is followed by a HotelDescriptiveContent
element with the information about the hotel.

The development kit contains an example in the samples folder that documents only the

FacilityInfo element; a non-normative example of a possible usage of all the other nodes mentioned

above is available in the samples-contrib folder and is not fully copied here due to the limited space:

<OTA_HotelDescriptiveInfoRS xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns="http://www.opentravel.org/OTA/2003/05"
 Version="3.000">

 <Success/>
 <HotelDescriptiveContents>
 <HotelDescriptiveContent HotelCode="123" HotelName="Frangart Inn">

 <!-- ... see file in development kit ... -->

 </HotelDescriptiveContents>
 </HotelDescriptiveContents>

</OTA_HotelDescriptiveInfoRS>

samples/Inventory-OTA_HotelDescriptiveInfoRS-hotelinfo.xml - outer part

4.4.9. Implementation tips and best practice

Please note that section 4.4 has been changed multiple times since its creation. See appendix C for

AlpineBits® 2018-10 page 48 of 85

compatibility information.

AlpineBits® 2018-10 page 49 of 85

4.5. RatePlans

If the action parameter is OTA_HotelRatePlanNotif:RatePlans the client sends information

about rates and related rules.

4.5.1. Client request

The parameter request contains an OTA_HotelRatePlanNotifRQ document.

Each document contains one RatePlans element. For the attributes HotelCode and HotelName the

rules are the same as for room availability notifications (section 4.1). Note that requests are limited to

one hotel per message.

Nested inside RatePlans are RatePlan elements, one for each rate plan. The RatePlan element has

the following mandatory attributes (but see the next section for exceptions):

• RatePlanNotifType is either New, Overlay or Remove (see section "Synchronization" below),

• CurrencyCode is EUR,

• RatePlanCode is the rate plan ID.

The optional RatePlan attributes RatePlanType and RatePlanCategory are used to transmit

special offers and are defined as follows: A special offer or package presented by the hotel must set

RatePlanType to 12 (means "Promotional") and must not set the RatePlanCategory attribute. An

offer or package campaigned by a third party (such as a consortium or a tourist organization) in which

the hotel participates must set RatePlanType to 12 and also the RatePlanCategory attribute with a

value defined by the third party.

The two optional attributes RatePlanID and RatePlanQualifier may be used by the client to

identify a "master" rateplan and its alternative versions if the server supports them (see section about

joining rate plans).

Each RatePlan element contains, in order:

• zero or more BookingRule elements: used to restrict the applicability of the rate plan to a given

stay - zero means no restrictions,

• zero or more Rate elements: indicate the cost of stay,

• zero or more Supplement elements: to specify supplements such as final cleaning fees or similar

extras,

• one Offer element with one OfferRule element: it defines the cut-off age above which guests are

considered adults, the allowed age range for children (or whether children are allowed at all), and

optionally introduces more restrictions to the applicability of the rate plan,

• zero, one or two additional Offer elements: indicates potential discounts such as free nights or kids

that go free,

• zero to five Description elements.

Here is the global structure of the document:

AlpineBits® 2018-10 page 50 of 85

<?xml version="1.0" encoding="UTF-8"?>
<OTA_HotelRatePlanNotifRQ xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns="http://www.opentravel.org/OTA/2003/05"
 xsi:schemaLocation="http://www.opentravel.org/OTA/2003/05
OTA_HotelRatePlanNotifRQ.xsd"
 Version="1.000">

 <RatePlans HotelCode="123" HotelName="Frangart Inn">

 <RatePlan RatePlanNotifType="New" CurrencyCode="EUR" RatePlanCode="Rate1-4-HB">

 <BookingRules>
 <BookingRule Start="2014-03-03" End="2014-04-17">
 ...
 </BookingRule>
 </BookingRules>

 <Rates>
 <!-- "static" and "date dependent" Rate element described below -->
 <Rate> ... </Rate>
 </Rates>

 <Supplements>
 <!-- "static" and "date dependent" Supplement element described below -->
 <Supplement> ... </Supplement>
 </Supplements>

 <Offers>
 <Offer> ... </Offer>
 </Offers>

 <Description Name="title">
 <!-- ... -->
 </Description>

 </RatePlan>

 </RatePlans>

</OTA_HotelRatePlanNotifRQ>

samples/RatePlans-OTA_HotelRatePlanNotifRQ.xml - outer part

The elements BookingRule, Rate, Supplement and Offer are explained in the following sections.

Each Description element must have a Name attribute. Within a rate plan, the Name attribute values

must be distinct. Allowed values are:

• title

• intro

• description

• gallery

• codelist

For the optional Description elements with names title, intro or description, the following

rules hold:

• Each Description element contains one or more Text elements with the attribute TextFormat
set to PlainText or HTML and the attribute Language set to a two-letter lowercase language

abbreviation according to ISO 639-1. At most one Text element is allowed for each combination of

Language and TextFormat.

• The presence of a Text element with TextFormat set to HTML is intended as rich text alternative of

AlpineBits® 2018-10 page 51 of 85

a Text element with TextFormat set to PlainText of the same Language and makes the latter

mandatory.

• Please note that an AlpineBits® server is explicitly allowed to filter, shorten or even skip the HTML

content, therefore the usage of Text elements with TextFormat set to HTML is not recommended

but left as an option for implementers that absolutely need it.

Here is an example:

<Description Name="title">
 <Text TextFormat="PlainText" Language="en">Wellness Offer</Text>
 <Text TextFormat="PlainText" Language="de">Wellness Angebot</Text>
 <Text TextFormat="PlainText" Language="it">Offerta Wellness</Text>
</Description>
<Description Name="intro">
 <Text TextFormat="PlainText" Language="en">Lorem ipsum EN</Text>
 <Text TextFormat="PlainText" Language="de">Lorem ipsum DE</Text>
 <Text TextFormat="PlainText" Language="it">Lorem ipsum IT</Text>
</Description>
<Description Name="description">
 <Text TextFormat="PlainText" Language="en">Lorem ipsum sit amet EN</Text>
 <Text TextFormat="PlainText" Language="de">Lorem ipsum sit amet DE</Text>
 <Text TextFormat="PlainText" Language="it">Lorem ipsum sit amet IT</Text>
 <Text TextFormat="HTML" Language="en">Lorem ipsum
 sit amet EN</Text>
 <Text TextFormat="HTML" Language="de">Lorem ipsum
 sit amet DE</Text>
 <Text TextFormat="HTML" Language="it">Lorem ipsum
 sit amet IT</Text>
</Description>

The optional Description element with name gallery is used to store a sequence of images. Each

sequence describes one (independent) image and is made of:

• one Image element containing the image URL,

• zero or more Text elements with attributes TextFormat (set to PlainText) and Language (at

most one Text element per language) that describe the image above

• zero or one Text elements with just the attribute TextFormat (set to PlainText) containing

copyright information for the image above,

• zero or one URL elements containing a link to the attribution of image above.

Here is an example:

<Description Name="gallery">

 <Image>http://www.example.com/my-beautiful-room.jpg</Image>
 <Text TextFormat="PlainText" Language="en">Description EN</Text>
 <Text TextFormat="PlainText" Language="it">Description IT</Text>
 <Text TextFormat="PlainText" Language="de">Description DE</Text>
 <Text TextFormat="PlainText">(C) 2012 Example Inc.</Text>
 <URL>http://www.example.com/attribution/</URL>

 <Image>http://www.example.com/my-even-more-beautiful-room.jpg</Image>
 <Text TextFormat="PlainText" Language="en">Description EN</Text>
 <Text TextFormat="PlainText" Language="it">Description IT</Text>
 <Text TextFormat="PlainText" Language="de">Description DE</Text>
 <Text TextFormat="PlainText">(C) 2012 Example Inc.</Text>
 <URL>http://www.example.com/attribution/</URL>

 <!-- ... -->

</Description>

The optional Description element with name codelist is used to exchange "theme" information

AlpineBits® 2018-10 page 52 of 85

about the rate plan that is not meant to be read by humans.

Such a Description element contains nothing but one or more ListItem elements with no

attributes, each containing a code (the quoted part) from the following list:

• "ALPINEBITS:1001" meaning Bicycle touring

• "ALPINEBITS:1002" meaning Car-free Holiday

• "ALPINEBITS:1003" meaning Cars & Motorcycle

• "ALPINEBITS:1004" meaning Christmas Markets

• "ALPINEBITS:1005" meaning Culture

• "ALPINEBITS:1006" meaning Ecologic Holiday

• "ALPINEBITS:1007" meaning Events

• "ALPINEBITS:1008" meaning Family

• "ALPINEBITS:1009" meaning Food

• "ALPINEBITS:1010" meaning Golf

• "ALPINEBITS:1011" meaning Hiking

• "ALPINEBITS:1012" meaning Horseback Riding

• "ALPINEBITS:1013" meaning Luxury Holiday

• "ALPINEBITS:1014" meaning Mountain Bike

• "ALPINEBITS:1015" meaning Other Summer Activities

• "ALPINEBITS:1016" meaning Other Winter Activities

• "ALPINEBITS:1017" meaning Pets-friendly Holiday

• "ALPINEBITS:1018" meaning Road Bike

• "ALPINEBITS:1019" meaning Romantic Holiday

• "ALPINEBITS:1020" meaning Sci & Snowboard

• "ALPINEBITS:1021" meaning Spa & Health

• "ALPINEBITS:1022" meaning Wine

• "ALPINEBITS:1023" meaning eBike

The "ALPINEBITS" and "OTA" namespaces are reserved, but partners are free to define custom

namespaces. A server can safely ignore codes it doesn’t recognize and must not return a warning or

error if it encounters one.

Here is an example:

<Description Name="codelist">
 <ListItem>ALPINEBITS:1001</ListItem>
 <ListItem>ALPINEBITS:1006</ListItem>
</Description>

Booking rules

BookingRule elements can be linked to room categories (see section 4.4) via their Code attribute. If

the Code attribute is given, also the CodeContext attribute must be set and its value must be

ROOMTYPE (OTA lacks a InvTypeCode attribute in this context). A BookingRule without a Code
attribute applies to all room categories.

A BookingRule element must have attributes Start and End (both must be valid dates in the form

YYYY-MM-DD) and satisfy the condition Start ≤ End. Unless otherwise specified, Start and End
must be considered inclusive.

AlpineBits® 2018-10 page 53 of 85

Within the same rate plan, BookingRule elements must not overlap (concerning their Start and End
attributes) if they belong to the same class. Classes are:

• BookingRule elements with no Code attribute,

• BookingRule elements with the same value for the Code attribute.

The server must consider overlaps as an error.

BookingRule elements are used to define a number of restriction criteria:

• the minimum or maximum length of stay (LOS) using the LengthOfStay element,

• the arrival day of week (arrival DOW) using the ArrivalDaysOfWeek element,

• the departure day of week (departure DOW) using the DepartureDaysOfWeek element,

• a master restriction status (values Open/ Close) using the RestrictionStatus element.

Any missing criteria is to be interpreted as unrestricted.

LengthOfStay elements indicate a minimum length of stay (by setting the attribute

MinMaxMessageType to SetMinLOS or SetForwardMinStay) or a maximum length to stay (by

setting the attribute MinMaxMessageType to SetMaxLOS or SetForwardMaxStay). Each value of

MinMaxMessageType must not appear more than once in the same LengthsOfStay container

element. It is a client responsibility to check that - if the attribute MinMaxMessageType sets a value for

SetMinLOS, it must be ≤ than SetMaxLOS, similarly SetForwardMinStay must be ≤

SetForwardMaxStay.

When matching a BookingRule, a server must consider the following rules:

• criteria of the booking rule (if any) that applies to the arrival day (Start ≤ arrival day ≤ End):

SetMinLOS, SetMaxLOS, arrival DOW, master status Open,

• criteria of the booking rule (if any) that applies to the departure day (Start ≤ departure day ≤

End): departure DOW,

• criteria of the booking rule (if any) that applies and need to be checked for each day of the stay

(excluding the departure day): the day must not be denied by a master status Close rule. The

whole length of the stay must be consistent with SetForwardMinStay and SetForwardMaxStay
attributes.

A stay must be allowed by all applicable booking rules. In particular, there might be a BookingRule
element with a Code attribute and a BookingRule element without a Code attribute, both applicable to

a given stay. In such a case, both rules must allow the stay.

Three booking rule examples are shown here.

In example A, length of stay (LOS) restrictions are given. The Time attribute must be an integer > 0 and

the TimeUnit must be Day. This rule would restrict any stay having 2016-03-03 ≤ arrival day ≤ 2016-

04-17 to a duration between 5 and 7 nights.

<BookingRule Start="2016-03-03" End="2016-04-17">
 <LengthsOfStay>
 <LengthOfStay Time="5" TimeUnit="Day" MinMaxMessageType="SetMinLOS"/>
 <LengthOfStay Time="7" TimeUnit="Day" MinMaxMessageType="SetMaxLOS"/>
 </LengthsOfStay>
</BookingRule>

Booking rule (example A)

In example B, arrival day of week (arrival DOW) and departure day of week (departure DOW) restrictions

are given. At most one ArrivalDayOfWeek element and at most one DepartureDayOfWeek element

must be given. The DOW attributes that are 0 or false indicate restricted DOWs. A missing DOW

AlpineBits® 2018-10 page 54 of 85

attribute or a value of 1 or true indicate there is no restriction. This example would restrict any stay

requesting a "double" room (note the Code attribute) to arrive and depart on a Thursday or Saturday.

<BookingRule Start="2016-01-01" End="2017-12-31" Code="double" CodeContext="ROOMTYPE">
 <DOW_Restrictions>
 <ArrivalDaysOfWeek Mon="0" Tue="0" Weds="0" Thur="1" Fri="0" Sat="1" Sun="0"/>
 <DepartureDaysOfWeek Mon="0" Tue="0" Weds="0" Thur="1" Fri="0" Sat="1" Sun="0"/>
 </DOW_Restrictions>
</BookingRule>

Booking rule (example B)

Alternatively, example B could also be written as:

<BookingRule Start="2016-01-01" End="2017-12-31" Code="double" CodeContext="ROOMTYPE">
 <DOW_Restrictions>
 <ArrivalDaysOfWeek Mon="0" Tue="0" Weds="0" Fri="0" Sun="0"/>
 <DepartureDaysOfWeek Mon="0" Tue="0" Weds="0" Fri="0" Sun="0"/>
 </DOW_Restrictions>
</BookingRule>

Booking rule (example B - alternative)

The following example (C) forbids any stay in the suite in August (departure on the 1st of August is

possible).

<BookingRule Start="2016-08-01" End="2016-08-31" Code="suite" CodeContext="ROOMTYPE">
 <RestrictionStatus Restriction="Master" Status="Close"/>
</BookingRule>

Booking rule (example C)

Both attributes, Restriction and Status are mandatory. The value Close is necessary for the

restriction to occur. An Open value would be equivalent to no restriction.

Rates

AlpineBits® classifies Rate elements into two kinds: static Rate elements and date depending Rate
elements.

Static rates.

Static Rate elements are used to avoid sending the same information repeatedly for each rate of the

same rate plan. They:

• contain static information that is valid for the whole Rateplan and is not date depending,

• can only be transmitted in messages with RatePlanNotifType set to New,

• can only be used at position 1 in a list of Rate elements.

Here is an example of such a static rate:

AlpineBits® 2018-10 page 55 of 85

<!-- first in list: the static rate - values apply to every rate in the rate plan -->

<Rate RateTimeUnit="Day" UnitMultiplier="1">
 <BaseByGuestAmts>
 <BaseByGuestAmt Type="7"/>
 </BaseByGuestAmts>
 <MealsIncluded MealPlanIndicator="true" MealPlanCodes="12"/>
</Rate>

samples/RatePlans-OTA_HotelRatePlanNotifRQ.xml - static rate

By default, all rates are per night. It is, however, possible to specify rates per an arbitrary amount of

nights. This is done by adding both of the optional attributes RateTimeUnit (Day is the only allowed

value) and UnitMultiplier (number of nights) to the static Rate element. This will implicitly set the

time unit for all the rates in the rate plan.

The mandatory BaseByGuestAmt element with the only and mandatory Type attribute determines if

the amounts given in the rates of the containing rate plan are to be considered per person (Type 7) or

per room (Type 25).

Finally, a static rate also sets the board type for the rate plan. This is done with the mandatory

MealsIncluded element. The mandatory MealPlanIndicator attribute must be true and the

mandatory MealPlanCodes attribute assumes one of the following values (a subset of the full OTA

list):

• 1 - all inclusive,

• 3 - bed and breakfast,

• 10 - full board,

• 12 - half board,

• 14 - room only.

Note that AlpineBits® does not use the single Breakfast/Lunch/Dinner booleans.

Date depending rates.

These date depending rates (just "called" rates from here on) must have an InvTypeCode attribute that

links them to room categories (see section 4.4).

A Rate element must have attributes Start and End (both must be valid dates in the form YYYY-MM-

DD) and satisfy the condition Start ≤ End.

A stay matches the Start and End attributes if the the arrival day is ≥ Start and the departure day ≤

End + 1. When the server computes the total cost of the stay it must find a matching rate for each night

of the stay. Otherwise it cannot compute the total cost, and the stay is not possible.

Within the same rate plan, two Rate elements must not overlap (concerning their Start and End
attributes) if they have the same InvTypeCode attribute.

The server must consider overlaps as an error.

Rate elements specify costs (all amounts are taken to be in EUR and after taxes). Rate sub-elements

are: BaseByGuestAmt and AdditionalGuestAmount.

Here is an example of such a rate (the prices are considered "per person" because of the static rate

described above):

AlpineBits® 2018-10 page 56 of 85

<!-- following: "normal" rates ... -->

<Rate InvTypeCode="double" Start="2014-03-03" End="2014-03-08">
<BaseByGuestAmts>
 <BaseByGuestAmt NumberOfGuests="1" AgeQualifyingCode="10" AmountAfterTax="106"/>
 <BaseByGuestAmt NumberOfGuests="2" AgeQualifyingCode="10" AmountAfterTax="96"/>
</BaseByGuestAmts>
<AdditionalGuestAmounts>
 <AdditionalGuestAmount AgeQualifyingCode="10" Amount="76.8"/>
 <AdditionalGuestAmount AgeQualifyingCode="8" MaxAge="3" Amount="0" />
 <AdditionalGuestAmount AgeQualifyingCode="8" MinAge="3" MaxAge="6" Amount="38.4"/>
 <AdditionalGuestAmount AgeQualifyingCode="8" MinAge="6" MaxAge="10" Amount="48" />
 <AdditionalGuestAmount AgeQualifyingCode="8" MinAge="10" MaxAge="16" Amount="67.2"/>
</AdditionalGuestAmounts>
</Rate>

samples/RatePlans-OTA_HotelRatePlanNotifRQ.xml - rate

The BaseByGuestAmt elements (at least one must be present) have the following attributes:

• NumberOfGuests (mandatory) is an integer value > 0,

• AmountAfterTax (mandatory) is a decimal value > 0.0 (0.0 is not allowed),

• AgeQualifyingCode (mandatory) is set to 10 ("adult").

For a given Rate, all BaseByGuestAmt elements must have distinct NumberOfGuests values.

One or more BaseByGuestAmt elements are needed to cover all possible guest occupancies

compatible with the room category occupancy limits. In particular, one BaseByGuestAmt element with

attributes NumberOfGuests equal to the standard occupancy must be present. Additional

BaseByGuestAmt elements with values between the minimum and the standard occupancy may be

present. See the section "Computing the cost of a stay" below for details.

The AdditionalGuestAmount elements (zero or more can be present) are used to transmit the prices

for guests that are in a room beyond the minimum number of guests that ought to pay the full rate (see

below for the definition). Specific prices for children may also be sent with these elements. They have the

following attributes:

• AgeQualifyingCode (mandatory) is set to 8 ("child) or 10 ("adult"),

• MinAge and MaxAge are both integer values > 0 (a value of 0 is forbidden by OTA, even for

MinAge); when both are given together, the inequation MaxAge > MinAge must hold,

• Amount (mandatory) is a decimal value ≥ 0.0 (0.0 is allowed)

AdditionalGuestAmount elements must also comply with these rules that help resolve ambiguities

when computed the total cost of a stay:

1. If AdditionalGuestAmount are defined at all, at most one AdditionalGuestAmount element

with a AgeQualifyingCode set to 10 ("adult") may be present.

2. AdditionalGuestAmount elements having AgeQualifyingCode set to 8 ("child") must have at

least one of the attributes MinAge or MaxAge. Contrary, those with AgeQualifyingCode set to 10
("adult") must have neither.

3. The attributes MinAge and MaxAge are used to identify age brackets. An age matches the bracket if

and only if the following two conditions hold:

◦ MinAge is not given or MinAge ≤ age,

◦ MaxAge is not given or MaxAge > age.

All the Rate elements in a Rateplan must be consistent with the "brackets" defined in the first

OfferRule element, it is a client responsibility to ensure this.

AlpineBits® 2018-10 page 57 of 85

A server must return a warning outcome or error outcome if this is not the case.

Supplements

Supplements are supported through Supplement elements.

Each Supplement element has the following mandatory attributes:

• InvType is set to EXTRA,

• InvCode can be set freely (1 - 16 characters according to OTA) and is used as a key to identify a

supplement.

The InvType value ALPINEBITSEXTRA is not currently used, but is reserved for a future shared list of

common InvCode values.

Supplements, analogously to Rates are split into static and date depending Supplement elements.

The static supplements contain the information used to identify and describe the supplement to guests.

For each distinct InvCode that is specified, there must be exactly one static Supplement element and

there may be several date depending Supplement elements.

The following attributes and sub-elements are used in static supplements:

• The mandatory attribute AddToBasicRateIndicator must be set to true (to indicate the

supplement amount must be added to the amount coming from the rate).

• The mandatory attribute MandatoryIndicator (a boolean value) indicates that the customer

must book the supplement (true) or can choose to book the supplement (false).

• The mandatory attribute ChargeTypeCode must have one of the following values:

◦ 1 - daily,

◦ 12 - per stay,

◦ 18 - per room per stay,

◦ 19 - per room per night,

◦ 20 - per person per stay,

◦ 21 - per person per night,

◦ 24 - item.

Note that when ChargeTypeCode is 24, the total cost of stay should be computed by asking the

user for the number of items.

• An optional PrerequisiteInventory sub-element with the mandatory InvType attribute set to

ALPINEBITSDOW can be used to make supplements available only on certain days of the week. The

mandatory InvCode attribute can be used to identify those days of the week: it is a string made of

seven binary digits. Each position in the string refers to a day of the week, starting with Monday. A 1

at a given position means that the supplement is available on the corresponding day, a 0 means it’s

not. A value of 1100000 for instance, would indicate a supplement available only on Monday and

Tuesday.

• Zero to five Description elements - the format of the descriptions follow what has been explained

for rate plan level descriptions (with the same name values).

All the Supplement attributes mentioned are mandatory.

No other attributes or sub-elements are allowed for static data supplements (in particular attributes

Start and End are not allowed).

The following attributes and sub-elements define the price of the supplement for specific periods of time.

They are thus used in date depending supplements:

AlpineBits® 2018-10 page 58 of 85

• the attribute Amount indicates the cost of the supplement; amounts are taken to be in EUR and after

taxes; a value of 0 indicates the supplement is free of charge. If the attribute is missing, the

Supplement is not available,

• the attributes Start and End (with the usual meaning) define the period where the Amount
surcharge is applied.

• An optional PrerequisiteInventory sub-element with the mandatory InvType attribute set to

ROOMTYPE can be used to make supplements available only for certain room categories or price

them differently for different room categories. The mandatory InvCode attribute can be used to

identify the room category the supplement applies to.

The attributes Start and End are mandatory for supplements that contain date depending data, the

attribute Amount and the sub element PrerequisiteInventory are optional. No further Element or

Attribute is allowed.

Multiple date depending Supplement elements referring to the same InvCode and

PrerequisiteInventory might be used to specify different prices for different date ranges. Overlaps

are not allowed: it is a client responsibility to check that different Amount are never set for the same

date and the same Supplement; a server must return an error if it detects such an inconsistency in the

data.

When defining supplements, static and date depending data must be transmitted in separate

Supplement elements.

Here is a complete example of a supplement:

<Supplements>

<Supplement InvType="EXTRA"
 InvCode="0x539"
 AddToBasicRateIndicator="true"
 MandatoryIndicator="true"
 ChargeTypeCode="18">
 <Description Name="title">
 <Text TextFormat="PlainText" Language="de">Endreinigung</Text>
 <Text TextFormat="PlainText" Language="it">Pulizia finale</Text>
 </Description>
 <Description Name="intro">
 <Text TextFormat="PlainText" Language="de">
 Die Endreinigung lorem ipsum dolor sit amet.
 </Text>
 <Text TextFormat="PlainText" Language="it">
 La pulizia finale lorem ipsum dolor sit amet.
 </Text>
 </Description>
</Supplement>

<Supplement InvType="EXTRA"
 InvCode="0x539"
 Amount="20"
 Start="2014-10-01"
 End="2014-10-11">
</Supplement>

</Supplements>

samples/RatePlans-OTA_HotelRatePlanNotifRQ.xml - supplement

Static data may only be transmitted in messages with RatePlanNotifType set to New. Moreover, all

the static data must be defined within a single Supplement element.

Date depending data may be also transmitted in messages with RatePlanNotifType set to Overlay.

AlpineBits® 2018-10 page 59 of 85

See the section "Synchronization" below for more details.

Supplements contribute to the total cost of a stay. The general rule is that this contribution must always

be added to the amount calculated from the applied rates on a day by day basis. The departure day

supplements must not be applied, as the guest is leaving.

In case of ChargeTypeCode with value 12, 18 and 20 (see above, all supplements that are per stay)

the cost of a supplement may vary in the period of the stay. In this case, the total cost of the supplement

must be calculated using the following algorithm (assuming a 3-night stay with a cost of € 80 for the first

two days and € 85 for last two (including the departure day)):

• calculate the number of days where the supplement applies (the supplement must not be applied to

the departure day, hence the result is 3),

• sum the applicable price for each day (80 + 80 + 85 = 245 €),

• divide the result for the number of days obtained at step 1 and round the result at the second decimal

place (245 / 3 = 81.67 €).

Note that the rate plan is available also in dates for which a Supplement declared as mandatory is not

specified. Of course in these dates the supplement will not be available to guests. Similarly when a

supplement is not applicable to a potential stay due to an unmatched PrerequisiteInventory, the

rate plan - without the supplement - is still available.

Offers

Offers are considered static data and can only be transmitted in messages with RatePlanNotifType
set to New.

The mandatory first Offer element must contain one OfferRule element, no Discount element

and no Guest element.

The first OfferRule element contains:

• zero or one LengthOfStay elements with MinMaxMessageType set to SetMinLOS

• zero or one LengthOfStay elements with MinMaxMessageType set to SetMaxLOS

• zero or one ArrivalDaysOfWeek elements

• zero or one DepartureDaysOfWeek elements

The use of these elements inside an OfferRule is analogous to their use inside a BookingRule as

explained above.

The first OfferRule element further contains:

• one Occupancy element with the AgeQualifying attribute set to 10 ("adult") and an optional

MinAge attribute (integer value > 0)

• zero or one Occupancy element with the AgeQualifying code set to 8 ("child") and optional

attributes MinAge and MaxAge (integer value > 0)

Rules regarding these Occupancy elements:

• If the only Occupancy element present is the one with AgeQualifying attribute 10 ("adult") and

no MinAge attribute, all guests are to be considered "adults"; if the MinAge attribute is present,

MinAge must be ≤ 18 – all guests ≥ MinAge are considered "adults" and all guests < MinAge are

considered "children".

• If and only if the MinAge attribute is specified for the "adult" guests, then in order to allow the

presence of children, the Occupancy element with AgeQualifying attribute 8 ("child") must be

present. If that element has a MinAge and/or a MaxAge attribute, the age of "children" is restricted to

the interval MinAge ≤ age < MaxAge.

• Any of the Occupancy elements may contain also the attributes MinOccupancy with integer values

AlpineBits® 2018-10 page 60 of 85

between 0 and 99 and MaxOccupancy with integer values between 1 and 99 having the purpose to

restrict the total number of adults or children allowed in a stay with this rate plan.

The first OfferRule element might also have any of the following arguments with values that are

durations given in days encoded in ISO 8601 (thus always in the form PxD where x is the integer number

of days):

• MinAdvancedBookingOffset - the rate plan is only bookable before the given number of days

before the arrival date,

• MaxAdvancedBookingOffset - the rate plan is only bookable if booked after the given number of

days before the arrival date.

The first OfferRule element contains all the static booking rules of the rate plan. All the restrictions

that are defined in this element must be fulfilled by a stay in order to make the rate plan bookable.

Here is a quite minimal first OfferRule element without any restrictions: guests are considered adults if

they are of age 16 or older and children (of any age) are allowed:

<Offer>
 <OfferRules>
 <OfferRule>
 <Occupancy AgeQualifyingCode="10" MinAge="16"/>
 <Occupancy AgeQualifyingCode="8"/>
 </OfferRule>
 </OfferRules>
</Offer>

samples/RatePlans-OTA_HotelRatePlanNotifRQ.xml - offer

The first offer element is followed by zero, one or two additional Offer elements describing discounts.

AlpineBits® only supports offers having a Discount element with the Percent attribute set to 100.

There are two use cases:

• free nights offers, such as "7+1" formulas and the like,

• family offers, such as "first kid goes free".

Rate plans may only contain at most one of each kind. Note that discounts (if given at all) do not

necessarily need to apply to a stay in order to make the rate plan bookable.

A free nights offer has a Discount element with the following attributes:

• Percent (mandatory) - value is always 100.

• NightsRequired (mandatory) - how many nights at least must be booked for the discount to

apply.

• NightsDiscounted (mandatory) - how many nights are discounted.

• DiscountPattern (optional) - the pattern is required to be in the form (nights required - nights

discounted) times the 0 followed by (nights discounted) times the 1. No other pattern is allowed.

If the DiscountPattern is present, the discount pattern can be applied repeatedly from the beginning

of the stay. If, for instance, NightsRequired is 7 and the stay is 14 nights, the pattern applies exactly

twice, thus two times the NightsDiscounted nights are free (corresponding to the nights having a 1 in

the pattern).

If the DiscountPattern is absent, the discount is not repeatable and the free nights are simply the

last NightsDiscounted nights of the stay.

Free night offers apply to every amount referring to the discounted night (rates as well as per-day or per-

night supplements, including mandatory ones).

AlpineBits® 2018-10 page 61 of 85

Free night offers may be only used in conjunction with rates that have a UnitMultiplier of 1.

A family offer has a Discount element with just the Percent attribute set to 100 followed by at most

one Guest element defining who goes free. Guest attributes (all mandatory) are:

• AgeQualifyingCode is set to 8.

• MaxAge is an integer value > 0: the discount only applies to guests having age < MaxAge.

• MinCount is an integer value ≥ 0: it identifies the minimum number of guests having age < MaxAge
that are required for the offer to be applicable.

• FirstQualifyingPosition - always set to 1,

• LastQualifyingPosition - number of persons the discount applies to.

Family offers apply to every amount referring to the discounted guest (rates as well as per-person

supplements, including mandatory ones).

In case the number of age-matching guests exceeds the number of discounted guests, AlpineBits®

requires to discount the guests starting from the youngest.

Following are a few complete examples of the Offers element.

Example A (early booking offer): must be booked at least 30 days in advance, guests ≥ 16 are

considered adults, guest < 10 are not allowed.

<Offers>
 <Offer>
 <OfferRules>
 <OfferRule MinAdvancedBookingOffset="P30D">
 <Occupancy AgeQualifyingCode="10" MinAge="16" />
 <Occupancy AgeQualifyingCode="8" MinAge="10" MaxAge="16" />
 </OfferRule>
 </OfferRules>
 </Offer>
</Offers>

Offers - example A

Example B (last minute offer): cannot be booked more than 7 days in advance, guests ≥ 16 are

considered adults, children of any age allowed.

<Offers>
 <Offer>
 <OfferRules>
 <OfferRule MaxAdvancedBookingOffset="P7D">
 <Occupancy AgeQualifyingCode="10" MinAge="16" />
 <Occupancy AgeQualifyingCode="8" />
 </OfferRule>
 </OfferRules>
 </Offer>
</Offers>

Offers - example B

Example C (four nights for the price of three): only applicable to a stay of exactly 4 nights with arrival on

Sunday and departure on Thursday, last night is free, guests ≥ 16 are considered adults, children of any

age allowed.

AlpineBits® 2018-10 page 62 of 85

<Offers>
 <Offer>
 <OfferRules>
 <OfferRule>
 <LengthsOfStay>
 <LengthOfStay Time="4" TimeUnit="Day" MinMaxMessageType="SetMinLOS" />
 <LengthOfStay Time="4" TimeUnit="Day" MinMaxMessageType="SetMaxLOS" />
 </LengthsOfStay>
 <DOW_Restrictions>
 <ArrivalDaysOfWeek Sun="1" Mon="0" Tue="0" Weds="0" Thur="0" Fri="0" Sat="0"
/>
 <DepartureDaysOfWeek Sun="0" Mon="0" Tue="0" Weds="0" Thur="1" Fri="0" Sat="0"
/>
 </DOW_Restrictions>
 <Occupancy AgeQualifyingCode="10" MinAge="16" />
 <Occupancy AgeQualifyingCode="8" />
 </OfferRule>
 </OfferRules>
 </Offer>
 <Offer>
 <Discount Percent="100" NightsRequired="4" NightsDiscounted="1" />
 </Offer>
</Offers>

Offers - example C

Example D (another free nights example): the last night is free if the stay is ≥ 4 nights. Since there is no

DiscountPattern, you still get just one (the last) night free, even if the stay is ≥ 8 nights. Guests ≥ 16

are considered adults, children of any age allowed. Note the rate plan is still bookable for stays of less

than 4 nights (but then there’s no discount).

<Offers>
 <Offer>
 <OfferRules>
 <OfferRule>
 <Occupancy AgeQualifyingCode="10" MinAge="16" />
 <Occupancy AgeQualifyingCode="8" />
 </OfferRule>
 </OfferRules>
 </Offer>
 <Offer>
 <Discount Percent="100" NightsRequired="4" NightsDiscounted="1" />
 </Offer>
</Offers>

Offers - example D

Example E (one child goes free): if there are at least two children < 5, one of them (the younger one)

goes free. Guests ≥ 16 are considered adults, children of any age allowed. Note the rate plan is still

bookable if the family offer isn’t applicable.

AlpineBits® 2018-10 page 63 of 85

<Offers>
 <Offer>
 <OfferRules>
 <OfferRule>
 <Occupancy AgeQualifyingCode="10" MinAge="16" />
 <Occupancy AgeQualifyingCode="8" />
 </OfferRule>
 </OfferRules>
 </Offer>
 <Offer>
 <Discount Percent="100" />
 <Guests>
 <Guest AgeQualifyingCode="8" MaxAge="5" MinCount="2"
 FirstQualifyingPosition="1"
 LastQualifyingPosition="1" />
 </Guests>
 </Offer>
</Offers>

Offers - example E

Example F has the same family discount as example E, but here there is also a restriction, stating the

rate plan is only bookable if there are at least two children < 5.

<Offers>
 <Offer>
 <OfferRules>
 <OfferRule>
 <Occupancy AgeQualifyingCode="10" MinAge="16" />
 <Occupancy AgeQualifyingCode="8" MaxAge="5" MinOccupancy="2"/>
 </OfferRule>
 </OfferRules>
 </Offer>
 <Offer>
 <Discount Percent="100" />
 <Guests>
 <Guest AgeQualifyingCode="8" MaxAge="5" MinCount="2"
 FirstQualifyingPosition="1" LastQualifyingPosition="1" />
 </Guests>
 </Offer>
</Offers>

Offers - example F

Example G combines some restriction with a family offer and a free nights offer! N nights are free

according to the pattern, if the stay is at least N times 4 nights. Additionally one child < 5 goes free. The

stay must be > 4 nights due to LOS restriction, but the rate plan is bookable also without the presence of

a child < 5 (the family offer just doesn’t apply).

AlpineBits® 2018-10 page 64 of 85

<Offers>
 <Offer>
 <OfferRules>
 <OfferRule>
 <LengthsOfStay>
 <LengthOfStay Time="4" TimeUnit="Day" MinMaxMessageType="SetMinLOS"
/>
 </LengthsOfStay>
 <Occupancy AgeQualifyingCode="10" MinAge="16" />
 <Occupancy AgeQualifyingCode="8" />
 </OfferRule>
 </OfferRules>
 </Offer>
 <Offer>
 <Discount Percent="100" NightsRequired="4"
 NightsDiscounted="1" DiscountPattern="0001" />
 </Offer>
 <Offer>
 <Discount Percent="100" />
 <Guests>
 <Guest AgeQualifyingCode="8" MaxAge="5" MinCount="1"
 FirstQualifyingPosition="1" LastQualifyingPosition="1" />
 </Guests>
 </Offer>
</Offers>

Offers - example G

Joining rate plans

The use case of having alternative prices for alternative meal plans is fairly common. To this end,

AlpineBits® provides the functionality of joining rate plans. In this case, the two optional attributes

RatePlanID and RatePlanQualifier may be used by the client to identify a "master" rateplan and

its alternative versions. They can only be sent if the server supports the

OTA_HotelRatePlanNotif_accept_RatePlanJoin capability. All these rate plans share the same

RatePlanID: exactly one rate plan (the "master") for each RatePlanID value must have the

RatePlanQualifier set to true, every other rate plan (the alternative versions) that shares the same

RatePlanID must have the RatePlanQualifier set to false.

When the server joins rate plans, it must use these components from the "master" rate plan:

• descriptive contents

• static information about rates (except the element MealsIncluded)

• offers

• static information about supplements

and must take these components from the alternative versions:

• booking rules

• date dependent information about rates

• date dependent information about supplements.

4.5.2. Computing the cost of a stay

The information contained in a rate plan message (together with information about the stay and the

inventory) can be used to compute the total cost of a given stay, provided the stay is possible at all.

The computation is somewhat complex due to the large number of rules involved. The rationale is that

the algorithm should be as unambiguous and as top-down as possible. It is never necessary to perform

permutations or recursion to find an "optimized solution". Elements with Start and End attributes, for

example, must not overlap. The same is true for age brackets, as we’ve seen. The application of children

AlpineBits® 2018-10 page 65 of 85

rebates is very carefully designed to give a unique result and the same holds for offers, etc.

The required steps to perform such a computation are outlined in this section. Also see the section

"Implementation tips and best practice" below for a link to a reference implementation.

The following information is needed about the stay:

• the number of adult guests: n ≥ 0,

• the ages (in years) of all guest that are considered children (the cut-off age above which guests are

considered adults is defined in the first OfferRule element): an array of integers c,

• the requested room category (i.e. InvTypeCode / Code): code,

• the arrival date arr and the departure date dep where dep > arr.

The total number of guests (n + the length of the array c) must be > 0.

The following information is needed about the requested room category from inventory (see section 4.4):

• the value of MinOccupancy min > 0,

• the value of StandardOccupancy std ≥ min,

• the value of MaxOccupancy max ≥ std,

• (optional) the value of MaxChildOccupancy mco, such that 0 ≤ mco ≤ max.

From these values the minimum number of guests that ought to pay the full rate (minfull) can be

computed:

• if MaxChildOccupancy is not given, minfull = std,

• otherwise, minfull = minimum(max - mco, std).

Then, to verify that a stay is allowed and to compute its total cost, the following steps need to be

performed.

Step 1 (total occupancy check)

Verify that min ≤ total number of guests (n + the length of the array c) ≤ max. Unless this inequation

holds, the stay in the selected room category is not possible and no cost can be computed.

Step 1b (offer rule check)

Verify that arr, n and c are consistent with the first OfferRule element explained in the Offers section.

It is not allowed to promote children to "adults" (that is remove elements from c and increment n) to force

a match.

Step 2 (transformation)

While n < minfull and the length of c is > 0, keep removing the greatest element from the array c and

incrementing n by 1. In simple words: transform kids to adults as long as there are any left in an attempt

to reach the minimum number of guests that pay the full rate.

Step 3 (family offers)

If there are any matching family offers, apply them. When a family offer is applied, the corresponding

elements from the array c are removed. The number of removed elements is referred to as numfree

below.

A rate plan can be booked for a given a stay, even if it contains family offers that do not match the stay

(of course the discount is not applied in that case).

Step 4a (restrictions check)

Verify that no BookingRule elements impose restrictions that forbid the stay. The restrictions to

consider have been detailed earlier in this section (see the section "booking rules"): the

minimum/maximum length of stay (LOS), the arrival/departure day of week (DOW), the master restriction

AlpineBits® 2018-10 page 66 of 85

status.

Step 4b (compute cost)

Loop over the dates of the period of stay, finding the rate with matching Start and End values. Thanks

to the fact that rates must not overlap, there is no ambiguity there.

It might be necessary, and it is explicitly allowed

• to "stitch" rates together to cover longer stays, accumulating the amount due and/or

• to "split" rates having a UnitMultiplier > 1, dividing the amount due by the fraction of nights

used.

A stay is only possible if every night of the stay can be covered by a rate.

The detailed implementation for this particular loop-over-and-match-rate step will likely depend on the

data model used. However, for each rate, the following sub-steps are to be performed to pick the correct

amount from the BaseByGuestAmt and AdditionalGuestAmount elements:

• Each child (e.g. each element of the array c) is matched to the corresponding

AdditionalGuestAmount element with AgeQualifyingCode set to 8 ("child"). At this point the

fact that a match can be made for each child is guaranteed by the rules related to the first

OfferRule element and by the check in step 1b.

• Out of the n guests, up to and including std, each pay an amount given by the one

BaseByGuestAmt element having:

◦ a NumberOfGuests value of minimum(n + length of c + numfree, std) if the Type value is 7
("per person") or

◦ a NumberOfGuests value of minimum(n, std) if the Type is 25 ("per room").

If the correct BaseByGuestAmt element is not available, the stay as a whole is not possible (the rate

plan is incomplete and cannot be applied).

• The remaining guests among the n - if any - each pay an amount given by the

AdditionalGuestAmount elements with AgeQualifyingCode set to 10 ("adult").

If the correct AdditionalGuestAmount element is not available, the stay as a whole is not

possible (the rate plan is incomplete and cannot be applied).

At this point, unless a free nights offer applies to the date and rate just considered (note that free nights

offers are compatible only with rates having a UnitMultiplier of 1), sum the contribution to the total

cost.

Next, consider the supplements (mandatory and optional ones). Again, the exact implementation of the

supplement matching algorithm will depend very much on the data model used. Note in any case, that

free nights offers also apply to supplements, so the contribution to the cost from supplements that are

per day is affected too.

AlpineBits® 2018-10 page 67 of 85

Here is a flowchart of the whole process:

AlpineBits® 2018-10 page 68 of 85

4.5.3. Synchronization

Clients and servers often wish to exchange only delta information about rates in order to keep the total

amount of data to be processed in check.

AlpineBits® uses the RatePlanNotifType attribute in each RatePlan element to define exactly how

deltas have to be interpreted. In order to transmit new rate plans or to replace them

RatePlanNotifType = New must be used. To transmit changes (deltas) a RatePlanNotifType
value of Overlay must be used.

Note, however, that

• RatePlanNotifType = New

At least one Description element must be present in the rate plan.The server adds the rate plan

as a whole. If a rate plan with the same RatePlanCode already exists, it is replaced. In case of

supplements, all static data must be sent within this message. Static rates must be sent within this

message too. Offers are always considered static and hence must also be send within this message.

The attributes RatePlanID and RatePlanQualifier - if supported by the server - might only be

sent within this message.

• RatePlanNotifType = Overlay

The server updates the rate plan (identified by RatePlanCode) using the received data. Elements

that are not transmitted are not touched, elements that are transmitted are completely replaced

(including all subelements). Since empty elements replace existing elements, sending empty

elements can be a means to delete them (see clarification below). In case of supplements or rates,

only date depending data may be sent within this message, thus supplements or rates cannot be

deleted with an Overlay message. Supplements might be set as not available, though. Offers cannot

be changed with an Overlay message. In order to update offers, the whole RatePlan has to be sent

again (using New). If the server has no rate plan with the given RatePlanCode, it may ignore the

client request but must return a warning if it does.

• RatePlanNotifType = Remove

The rate plan must be empty (no child elements). The server deletes the rate plan (identified by

RatePlanCode). If the server has no rate plan with the given RatePlanCode, it may ignore the

client request but must return a warning in this case.

So, when updating a rate plan, sending empty BookingRule elements will delete them. However, one

cannot delete sub-elements (such as only the LengthOfStay restrictions).

That being said, there is the special case of rate plan messages that contain a UniqueID element with

attribute Instance set to CompleteSet.

In this case a client indicates it wishes to initiate sending the complete list of its rate plans. The server

must then consider expired all rate plans it has on record that are not contained in the current

message (hint: delete them). In that case, the RatePlan element will not have any

RatePlanNotifType and no child elements must be present (the RatePlanCode must of course be

present).

Also regarding the CompleteSet case, if the client wishes to reset all rate plans for a given hotel it can

send a single empty RatePlan element (sending no RatePlan element at all would violate OTA

validation).

Regarding these synchronization mechanisms, a server must support everything except

RatePlanNotifType = Overlay. A server must set the corresponding capability if it does.

In order to limit the amount of transferred data and processing time, the following rules and

recommendations must be taken into account:

AlpineBits® 2018-10 page 69 of 85

• RatePlanNotifType = New

Complete RatePlans must be transmitted one at a time.

• RatePlanNotifType = Overlay

Updates to more than one RatePlan may be bundled into a single request. However, care should be

taken to keep the data size within reasonable bounds. In case of doubt, the updates should be

transmitted for one RatePlan at a time.

4.5.4. Server response

The server will send a response indicating the outcome of the request. The response is a

OTA_HotelRatePlanNotifRS document. Any of the four possible AlpineBits® server response

outcomes (success, advisory, warning or error) are allowed.

See Appendix A for details.

4.5.5. Implementation tips and best practice

A server, before declaring support for the capability

OTA_HotelRatePlanNotif_accept_RatePlan_mixed_BookingRule must ensure that an update

to a generic booking rule has no impact on existing specific rules.

About Supplements:

AlpineBits® supplements allow for the following use cases:

• exchange of included, mandatory or optional supplements

• exchange of multi-language descriptions of supplements with title and short text ("intro")

• exchange of date depending prices

• examples: cleaning fees, parking, New Year’s Eve dinner

• exchange of images

• categorization of supplements

AlpineBits® supplements don’t currently allow for the following use cases (these will be addressed in a

future release of AlpineBits®, therefore it’s possible that substantial modifications will be made):

• supplements available

Other things to note about supplements:

• AlpineBits® does not allow the child element RoomCompanions

• a rate plan must describe any local taxes and fees in its description (as opposed to giving them as a

supplement). The rationale behind this is that a portal does not have enough information to decide

whether these local taxes and fees apply to a given booking request or not

Reference Implementation:

A reference implementation for the computation of the cost of a stay is available at

https://development.alpinebits.org/#/rtapp. This implementation can be used manually (by using the

website) or automatically (by sending data to a web service). The implementation can also be run from

the command line, source code is available.

Please let the AlpineBits Alliance know if you find a discrepancy between this document and the

reference implementation.

If there is a discrepancy the following rules can be used to solve it:

• if the document is clear, the document prevails,

AlpineBits® 2018-10 page 70 of 85

https://development.alpinebits.org/#/rtapp

• if the document is ambiguous, the reference implementation prevails.

AlpineBits® 2018-10 page 71 of 85

4.6. BaseRates

If the action parameter is OTA_HotelRatePlan:BaseRates, the client sends a pull request to query

rate plans from the server in order to import data back into a PMS or portal.

4.6.1. Client request

The parameter request contains an OTA_HotelRatePlanRQ document.

Nested inside one RatePlan element the following sub-elements are given in order:

• zero or one DateRange element with Start and End attributes,

• zero or more RatePlanCandidate elements with attributes RatePlanCode and RatePlanID,

• one HotelRef element with attributes HotelCode and HotelName - the rules are the same as for

room availability notifications (section 4.1.1).

Here is an example:

<OTA_HotelRatePlanRQ xmlns="http://www.opentravel.org/OTA/2003/05" Version="3.000">
 <RatePlans>
 <RatePlan>

 <DateRange Start="2016-12-25" End="2017-01-03" />

 <RatePlanCandidates>
 <RatePlanCandidate RatePlanCode="DZ" RatePlanID="DailyRate"/>
 <RatePlanCandidate RatePlanCode="SPECIAL"/>
 </RatePlanCandidates>

 <HotelRef HotelCode="123" HotelName="Frangart Inn" />

 </RatePlan>
 </RatePlans>
</OTA_HotelRatePlanRQ>

samples/BaseRates-OTA_HotelRatePlanRQ.xml

Regarding DateRange and RatePlanCandidate six cases need to be distinguished:

1. DateRange omitted, RatePlanCandidate present:

The server will answer with the matching rate plans.

2. DateRange omitted, RatePlanCandidate omitted:

The server will answer with all the rate plans it has on record. Note that the Rate elements are

omitted, the response contains just the RatePlan elements with the Description elements.

3. DateRange empty, RatePlanCandidate present:

If the server supports deltas, it must return the changes to the requested rate plans since the last

request by the same client. If the server does not support deltas, this is not possible and will trigger a

warning response.

4. DateRange empty, RatePlanCandidate omitted:

This is not possible and will trigger a warning response.

5. DateRange set, RatePlanCandidate present:

Server responds with all rates matching the given date range and rate plan.

6. DateRange set, RatePlanCandidate omitted:

AlpineBits® 2018-10 page 72 of 85

The server response contains descriptions of the rate plans having rates in the given date range.

Note that the Rate elements are omitted, the response contains just the RatePlan elements with the

Description elements.

4.6.2. Server response

The server will send a response indicating the outcome of the request. The response is a

OTA_HotelRatePlanRS document. Any of the four possible AlpineBits® server response outcomes

(success, advisory, warning or error) are allowed. See Appendix A for details.

In case of a successful outcome, the Success element is followed by a RatePlans element with the

information about the hotel.

Here is an example:

<OTA_HotelRatePlanRS xmlns="http://www.opentravel.org/OTA/2003/05" Version="3.000">
 <Success/>
 <RatePlans HotelCode="123" HotelName="Frangart Inn">
 <RatePlan RatePlanCode="Base" CurrencyCode="EUR">
 <Rates>
 <Rate RateTimeUnit="Day" UnitMultiplier="1">
 <BaseByGuestAmts>
 <BaseByGuestAmt Type="7"/>
 </BaseByGuestAmts>
 <MealsIncluded MealPlanIndicator="true" MealPlanCodes="12"/>
 </Rate>
 <Rate Start="2016-12-29" End="2016-12-31" InvTypeCode="EZ">
 <BaseByGuestAmts>
 <BaseByGuestAmt NumberOfGuests="1"
 AmountAfterTax="130.00"/>
 </BaseByGuestAmts>
 </Rate>
 <Rate Start="2016-12-29" End="2016-12-31" InvTypeCode="DZ">
 <BaseByGuestAmts>
 <BaseByGuestAmt NumberOfGuests="2"
 AmountAfterTax="180.00"/>
 </BaseByGuestAmts>
 </Rate>
 </Rates>
 <Description Name="title">
 <Text TextFormat="PlainText" Language="en">Lorem ipsum.</Text>
 <Text TextFormat="PlainText" Language="it">Lorem ipsum.</Text>
 <!-- more languages ... -->
 </Description>

 </RatePlan>
 </RatePlans>
</OTA_HotelRatePlanRS>

samples/BaseRates-OTA_HotelRatePlanRS.xml

AlpineBits® 2018-10 page 73 of 85

A. AlpineBits® server response outcomes

For each data exchange action the server will send a specific response.

The response document type obviously depends on the action. For instance, a FreeRooms response will

be a OTA_HotelAvailNotifRS document, whereas a response to a GuestRequests message will be

a OTA_ResRetrieveRS document, as listed in section 4 (see the table at the beginning of the section

for an overview). The information in the response varies accordingly. E.g. a successful

OTA_ResRetrieveRS response contains a ReservationsList element, whereas an

OTA_HotelAvailNotifRS obviously cannot contain such an element.

What all responses have in common, however, is that they indicate the success or failure of the data

exchange action. AlpineBits® distinguishes four outcomes that are modeled using the three elements

provided by OTA in this context: Success, Warnings and Errors. The four outcomes are: success,

advisory, warning and error and are explained in the following sections.

Responses with an AlpineBits® success outcome

The request could be correctly parsed, was deemed syntactically valid and could be processed

successfully in its entirety. All business rules were satisfied. In this case, the response contains one

empty Success element, no Warnings and no Errors:

<!-- response document -->

 <Success/>

 <!-- according to the document type, more elements might follow -->

The client does not need to take any further action, upon receiving a response with a success outcome.

Responses with an AlpineBits® advisory outcome

As is the case for the success outcome, the request could be correctly parsed, was deemed syntactically

valid and could be processed successfully in its entirety. All business rules were satisfied.

However, one or more non-fatal problems were detected and the server wishes to let the client know

about them.

In this case, the response contains one empty Success element followed by one or more Warning
elements with the attribute Type set to 11, meaning "Advisory" according to the "Error Warning Type"

(EWT) list in the OTA code list 5.

Each Warning element should contain a human readable text.

Here is an example of FreeRooms response with an advisory outcome. Let’s imagine a server that

handles FreeRooms with delta messages but wishes to receive at least one full data set each 48 hours

and a client that hasn’t send one in the last 48 hours. The server might then proceed to accept another

delta message, but advise the client with the following response:

AlpineBits® 2018-10 page 74 of 85

<?xml version="1.0" encoding="UTF-8"?>

<OTA_HotelAvailNotifRS
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns="http://www.opentravel.org/OTA/2003/05"
 xsi:schemaLocation="http://www.opentravel.org/OTA/2003/05
OTA_HotelAvailNotifRS.xsd"
 Version="1.001">

 <Success/>
 <Warnings>
 <Warning Type="11">
 last full data set received more than 48 hours ago
 </Warning>
 </Warnings>

</OTA_HotelAvailNotifRS>

samples/FreeRooms-OTA_HotelAvailNotifRS-advisory.xml

A server might or might not implement responses with advisory outcomes.

However, a client must recognize advisory outcomes and visualize or log the human readable text, so

that the non-fatal problem can be analyzed and corrected at a later stage. Of course, there is no need to

resend the message as the server has already processed it successfully.

Responses with an AlpineBits® warning outcome

The request could be correctly parsed, was deemed syntactically valid, but could not be processed

successfully in its entirety, because some business rules were violated.

Some examples for messages that cause a business rule violation are:

• a message with an unknown HotelCode

• a RatePlans message having overlapping Rate elements with the same InvTypeCode attribute

• a GuestRequests acknowledgement message with an unknown ID

In this case, the response contains one empty Success element followed by one or more Warning
elements with the attribute Type set to any value allowed by the "Error Warning Type" (EWT) list in the

OTA code list 5 other than 11 ("Advisory").

Each Warning element should contain a human readable text.

Here is an example of RatePlans response with an warning outcome. Let’s imagine a client that sent

rate information concerning dates in the year 2107 because there was a data entry error. While the

request was formally correct the server could not process the request (and thus could not store the

information about the rates) because it does not deal with dates in the distant future. So the server will

proceed to refuse the request with the following warning response:

AlpineBits® 2018-10 page 75 of 85

<OTA_HotelRatePlanNotifRS
 xmlns="http://www.opentravel.org/OTA/2003/05"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.opentravel.org/OTA/2003/05
OTA_HotelRatePlanNotifRS.xsd"
 Version="3.14">

 <Success/>
 <Warnings>
 <Warning Type="3">
 dates are too far in the future for this server to process
 </Warning>
 </Warnings>

</OTA_HotelRatePlanNotifRS>

samples/RatePlans-OTA_HotelRatePlanNotifRS-warning.xml

The value 3 for attribute Type stands for "Biz rule" according to the EWT.

Upon receiving an AlpineBits® warning outcome, a client must consider the request to be failed in its

entirety and must act accordingly. Since the request violated a business rule, there is no use to just try

resending it. The client must rather escalate the failure. When run interactively, this means alerting the

user. When run in an automatized way, this means alerting someone using appropriate means.

It is important to understand that despite the meaning of the word "warning" in other contexts, an

AlpineBits® warning outcome indicates a failed request (due to violation of business rules). It cannot be

safely ignored.

Note that AlpineBits® uses the Warnings element also for acknowledgements in the GuestRequests

section (see 4.2.3). Those messages are not considered responses (as indicated by the RQ in

OTA_NotifReportRQ) and are thus unrelated to the discussion in the present section.

Responses with an AlpineBits® error outcome

The request caused one or more of the following problems:

• it could not be correctly parsed

• it was deemed syntactically invalid

• some error occurred while processing the request

and therefore the request could not be be processed successfully in its entirety.

In this case, the response contains one or more Error elements with the attribute Type set to 13,

meaning "Application error" according to the "Error Warning Type" (EWT) list and the attribute Code set

to any value allowed by the "Error Codes" list in the OTA code list 5.

Each Error element should contain a human readable text.

As an example, let’s imagine a client sends a message that requires one of the attributes HotelCode or

HotelName to be present, but doesn’t include any of the two. This makes the request invalid and the

server must answer with a response indicating the error outcome. Here is an example:

<!-- response document -->

 <Errors>
 <Error Type="13" Code="321">
 missing HotelCode or HotelName
 </Error>
 </Errors>

AlpineBits® 2018-10 page 76 of 85

Here, the Code 321 stands for "Required field missing" according to the "Error Codes" list.

Upon receiving an AlpineBits® error outcome, a client must consider the request to be failed in its

entirety and must act accordingly.

If a client software has reason to assume the problem is temporary and occurred for the first time, it

might try to resend the request at a later moment (and bail out after a small number of retries with no

success).

The client must then escalate the failure. When run interactively, this means alerting the user. When run

in an automatized way, this means alerting someone using appropriate means.

Note that a server that receives a request that is not authenticated, has missing or invalid POST

parameters, will just respond with an ERROR string as explained in sections 2 and 3. Since at that point

no action can be identified the request type and hence the response type is unknown and no exchange

of XML documents takes place.

Responses with a request for complete sets of data

Along with the previous response cases, a server can request the client to send a full data set right after

the current communication ends. The requested data may refer to different data from that received in the

originating AlpineBits® request (For instance the server may request a full transfer of Availability

information upon receiving a request for Rateplans).

In this case, the response contains one or more additional elements whose type depend on the outcome

of the request:

• one or more Warning elements in case of a success, advisory or warning outcome

• one or more Error elements in case of an error outcome

These elements must be empty, must have the attribute Type set to 11 (“Advisory”) and must have the

mandatory attribute Status with a value chosen among the following, based on the desired complete

data set:

• Status = ALPINEBITS_SEND_FREEROOMS to request the full set of free rooms data

• Status = ALPINEBITS_SEND_RATEPLANS to request the full set of rate plans data

• Status = ALPINEBITS_SEND_INVENTORY to request the room configuration

If the server sends more than one of such elements, they must be referred to different data types,

meaning that, at the current AlpineBits® version, a server can send up to three different requests: one for

each of the above Status values.

Upon receiving a response with one or more of these elements, the client should transmit the

corresponding data set as soon as possible in any order (see Tips and best practice).

The server should only send requests for kind of data supported by the client (the logic by which the

server keeps track of these information is beyond the scope of this specification). The client must

support receiving requests regarding any data, even if it is not directly supported/handled by it. The client

is free to ignore request for data it does not handle, but might process such requests as it deems more

appropriate, for instance by notifying the user.

Tips and best practice

A server should not request a complete data set in response to a complete set just received regarding

the same data type. In this case, a client must ignore the request.

It is a client’s responsibility to keep track of which data was requested by the server in case it receives

more than one element requesting different complete data set.

A server should use this feature with common sense and only when necessary in order to avoid useless

heavy-data transfer.

AlpineBits® 2018-10 page 77 of 85

A client should implement a precaution against too frequent complete set requests, for example limiting

its number in a given timespan.

Some examples:

The server accepts the message and requests a full synchronization of FreeRooms data:

<Success/>
<Warnings>
 <Warning Type=”11” Status=”ALPINEBITS_SEND_FREEROOMS”></Warning>
</Warnings>

The server sends a warning together with a request for a full synchronization of RatePlans data:

<Success/>
<Warnings>
 <Warning Type=”3”>
 Rate elements referred to same InvTypeCode with overlapping periods
 </Warning>
 <Warning Type=”11” Status=”ALPINEBITS_SEND_RATEPLANS”></Warning>
</Warnings>

The server sends an error together with a request for a full synchronization of Inventory and FreeRooms

data:

<Errors>
 <Error Type=”13” Code=”321”>
 missing Start attribute in StatusApplicationControl element
 </Error>
 <Error Type=”11” Status=”ALPINEBITS_SEND_INVENTORY”></Error>
 <Error Type=”11” Status=”ALPINEBITS_SEND_FREEROOMS”></Error>
</Errors>

AlpineBits® 2018-10 page 78 of 85

B. AlpineBits® developer resources

The AlpineBits® development home page is at https://www.alpinebits.org/developers/. There are

resources linked from that page that help test one’s implementation.

Public repositories with schema files and example code snippets are available online at

https://gitlab.com/alpinebits/. Contributions are welcome (any programming language).

AlpineBits® 2018-10 page 79 of 85

https://www.alpinebits.org/developers/
https://gitlab.com/alpinebits/

C. Protocol Version Compatibility

C.1. Major overhaul in version 2018-10

Housekeeping / Handshaking

The Housekeeping action has been renamed to Handshaking and the relative chapter has been

completely rewritten introducing breaking changes. Through the introduction of the

OTA_Ping:Handshaking action it is now possible for clients to expose the capabilities they support.

New action GuestRequests (Push)

This functionality was introduced in version 2018-10.

It is now possible to push GuestRequests instead of polling them. Please note that this functionality

relies on a few arrangements between the two parties that are not negotiated through AlpineBits®,

namely the endpoint (URL) where the client can receive the pushed GuestRequests, its credentials,

etc.

New attribute RoomType

This functionality was introduced in version 2018-10.

For Inventory and GuestRequests, in addition to the RoomClassificationCode attribute, the

optional attribute RoomType has been added in order to allow a more precise classification of the guest

accommodation.

Reference to the online presence of the lodging structure

This functionality was introduced in version 2018-10.

For Inventory, the element ContactInfos can be used to transmit URIs where the lodging structure

has a presence (like social networks, review aggregators, etc.).

Review price calculation

These changes were performed to the price calculation algorithm:

• the AdditionalGuestAmount element with attribute AgeQualifyingCode equal to 10 becomes

optional;

• the AdditionalGuestAmounts element can be transmitted also if the MaxOccupancy attribute is

equal to the StandardOccupancy;

Interaction with channel managers

• For BaseRates, a new case is described that allows servers to exchange information with clients

that are only able to send RatePlans overlay information.

• For GuestRequests of type Reservation, a recommendation to set the value of the mandatory

RatePlanCode attribute to the string "Unknown" has been added to ease the integration with

channel managers that do not provide a reference to the AlpineBits® RatePlan which the

GuestRequest actually refers to.

Server request for complete data set

In case of suspects of mis-alignment of data, servers can now request the client to send a full data set.

C.2. Major overhaul in version 2017-10

AlpineBits® 2018-10 page 80 of 85

AlpineBits® server response outcomes

The AlpineBits® response outcomes (success, advisory, warning, error) are now uniformly and more

thoroughly defined in the new appendix A.

In particular the distinction between warning and error outcomes is more in line with the OTA

documentation 3 (see the section "OpenTravel Message Success, Warnings & Errors Elements").

Implementations of 2015-07b will likely signal as errors things that in 2017-10 would be considered

warnings. This should not lead to breakage, however, since both (warnings and errors) unambiguously

indicate failed requests and this has been spelled out with greater clarity in the 2017-10 document.

In any case implementors are invited to have a close look at the new appendix A.

FreeRooms

Two new features have been added to FreeRooms: transmission of the number of bookable rooms and

purge requests.

GuestRequests

Two new features have been added to GuestRequests: commissions and encrypted credit card

numbers. The credit card holder name was made optional. Some info on how to fill out the ReservationID

was added to the best practice section.

SimplePackages

The feature has been removed in version 2017-10.

Inventory

Inventory messages were introduced in version 2014-04 and overhauled in version 2015-07.

In version 2017-10 the section was again changed significantly. They former Inventory request action

has been heavily refactored and split into four different actions:

1. Inventory/Basic: (push) action OTA_HotelDescriptiveContentNotif:Inventory (same

string was also used in previous version) is now only used to send room category information and

room lists (unlike previous versions, where it had multiple uses),

2. Inventory/Basic (pull): action OTA_HotelDescriptiveInfo:Inventory (new) is used to

request basic information.

3. Inventory/HotelInfo (push): action OTA_HotelDescriptiveContentNotif:Info (new) is used

to sends additional descriptive content and

4. Inventory/HotelInfo (pull): action OTA_HotelDescriptiveInfo:Info (new) is used to request

additional descriptive content.

Of course the corresponding action capabilities have been defined.

Due to the split, these capabilities are no longer necessary and were removed:

• OTA_HotelDescriptiveContentNotif_Inventory_accept_basic

• OTA_HotelDescriptiveContentNotif_Inventory_accept_additional

RatePlans

Concerning booking rules, previously the attribute MinMaxMessageType of LengthOfStay could

assume the two values SetMinLOS and SetMaxLOS and there were two corresponding capabilities

(OTA_HotelRatePlanNotif_accept_MinLOS and

OTA_HotelRatePlanNotif_accept_MaxLOS). With 2017-10 the list of values have been expanded

to four by adding SetForwardMinStay and SetForwardMaxStay. As all four values must be

AlpineBits® 2018-10 page 81 of 85

supported the two capabilities have been removed.

It is now possible to define supplements that are only available on given days of the week and

supplements that depend on room category.

Offers have been improved and extended: besides the discounts, the Offer element is now also used

to transmit the age above which a guest is considered an adult and a number of restrictions (for which 2

new capabilities (starting with OTA_HotelRatePlanNotif_accept_OfferRule) have been

introduced). Free night discounts have also been slightly updated.

Changes have been made to the algorithm describing the computation of the cost of a stay (see section

4.5.2): there is now a new step 1b, step 3 has been changed (a rate plan is now applicable even if it has

a family offer that doesn’t match the stat) and step 4b has been simplified (as we have complete and

gapless age brackets for all possible child ages now).

Descriptions have been extended and documented more thoroughly.

BaseRates

This action has been introduced with 2017-10.

C.3. Minor updates in version 2015-07b

Version 2015-07b is a maintenance release. The section 4.5 about rate plans has been mostly rewritten

with more precise and strict information about how to handle corner cases, especially regarding rebates.

While most of this does not lead to breaking changes per se, it is likely that 2015-07 servers that were

implemented before the release of 2015-07b would compute costs for stays differently, for lack of a

sufficiently strict description of details.

One deliberate breaking change of note is that 2015-07b requests the value of the AmountAfterTax
attribute in BaseByGuestAmt elements to be > 0, while 2015-07 used to allow a value ≥ 0.

C.4. Major overhaul in version 2015-07

Inventory

In version 2015-07 the Inventory message was changed from OTA_HotelInvNotif to

OTA_HotelDescriptiveContentNotif. The new message offers the same options as the one used

previously beside sending the name of the specific rooms, but allows for much richer descriptions,

including pictures. A high-level mapping between the old Inventory and the new one is as follows:

OTA_HotelInvNotif OTA_HotelDescriptiveContentNotif

SellableProduct GuestRoom

SellableProduct InvTypeCode GuestRoom Code

SellableProduct InvCode TypeRoom RoomID

Quantities MaximumAdditionalGuests Not needed anymore, see StandardOccupancy

Occupancy MinOccupancy GuestRoom MinOccupancy

Occupancy MaxOccupancy GuestRoom MaxOccupancy

Occupancy AgeQualifyingCode="8" GuestRoom MaxChildOccupancy

Not previously possible TypeRoom StandardOccupancy

Room RoomClassificationCode TypeRoom RoomClassificationCode

Amenity AmenityCode Amenity RoomAmenityCode

Text TextItem > Description

Not previously possible ImageItem > URL

AlpineBits® 2018-10 page 82 of 85

OTA_HotelInvNotif OTA_HotelDescriptiveContentNotif

Text (for specific Room) Not possible anymore

C.5. Major overhaul in version 2014-04

Version 2014-04 was a major overhaul. In most cases, a pre-2014-04 client will not be compatible with a

2014-04 server and viceversa. Here is a list of major changes in 2014-04.

HTTPS layer

The possibility of compression with gzip has been added.

FreeRooms

The possibility to send booking restrictions in FreeRooms has been removed as have the corresponding

capabilities. These are better handled by the new RatePlans.

The value of the action parameter has been changed from FreeRooms to

OTA_HotelAvailNotif:FreeRooms for uniformity with the other action values that all follow the

rootElement:actionValue format.

The possible responses (OTA_HotelAvailNotifRS document) have been re-categorized into four classes:

success, advisory (new), warning and error. For error responses the attributes have changed, fixing a

bad OTA interpretation.

Finally, the way deltas and complete transmissions are distinguished has changed. All in all

FreeRooms are not compatible with any previous version.

GuestRequests

GuestRequests have been heavily refactored. Previous AlpineBits® versions had two type of requests:

quotes and booking requests, the current version has three: booking reservations, quote requests and

booking cancellations. Also, the client can (and must) now send acknowledgements.

SimplePackages

The possible responses (OTA_HotelRatePlanNotifRS document) have been re-categorized into four

classes: success, advisory (new), warning and error. For error responses the attributes have changed,

fixing a bad OTA interpretation.

Inventory and RatePlans

These are new message types introduced with version 2014-04.

C.6. Compatibility between a 2012-05b client and a 2013-04 server

Housekeeping

The client will not send the X-AlpineBits-ClientID field in the HTTP header, since it is not aware of this

feature. This will cause authentication problems with those 2013-04 servers that require an ID.

The client will not send the X-AlpineBits-ClientProtocolVersion field in the HTTP header, since it is not

aware of this feature. This is no problem: a server that is interested in this, will simply recognize the client

as preceding protocol version 2013-04.

If the client checks the server version it will see 2013-04 - a version it doesn’t recognize. Likewise, if the

client checks the capabilities it might see the OTA_HotelAvailNotif_accept_deltas capability.

Client implementers interested to have their 2012-05b client talk to a 2013-04 server should verify this is

not a problem for their client software.

FreeRooms

AlpineBits® 2018-10 page 83 of 85

There is no compatibility problem in the request part: the client will not send partial information (deltas),

since it is simply not aware of the existence of the feature. Please be aware that the lack of this feature

(obviously) causes more data to be sent to the server, something not all companies that run servers will

be happy with. The server response might contain a Warning element the client cannot process. If the

client - as it should - carefully parses the response, it will treat this as an error situation and act

accordingly. So basically the client is expected to treat the warnings as error, which might be an issue

and this should be tested

GuestRequests

No compatibility problems are expected.

SimplePackages

2013-04 introduced the limitation that all packages sent within a single request must refer to the same

hotel. An older client not aware of this limit might incur an error returned from the server error.

Similar to the FreeRooms case, the server response might contain a Warning element the client cannot

process. If the client - as it should - carefully parses the response, it will treat this as an error situation

and act accordingly. So basically the client is expected to treat the warnings as an error, which might be

an issue and should be tested for.

C.7. Compatibility between a 2013-04 client and a 2012-05b server

Housekeeping

The client sends the X-AlpineBits-ClientProtocolVersion field and may send the X-AlpineBits-ClientID

field in the HTTP header, but the server will just ignore it - being unaware of the feature. If the client

checks the server version and/or checks the capabilities - as it should - it will note the missing features

and not use them. Hence, technically there is no problem with this combination.

FreeRooms

The client will not send partial information (deltas), since the server does not export the

OTA_HotelAvailNotif_accept_deltas capability.

The server will never send a response with a Warning element. This is not a problem for the client.

GuestRequests

In 2013-04 the form of the ID attribute is not any more restricted. It has become a free text field. An older

server might insist on the old form and throw an error.

SimplePackages

The server will never send a response with a Warning element. This is not a problem for the client.

AlpineBits® 2018-10 page 84 of 85

D. External links
[0] Creative Commons BY SA license:

https://creativecommons.org/licenses/by-sa/3.0/

[1] HTTP basic access authentication:

https://en.wikipedia.org/wiki/Basic_access_authentication/

[2] OpenTravel Alliance:

https://opentravel.org/

[3] OTA2015A documentation:

http://opentravelmodel.net/pubs/specifications/OnlinePublicationDetails.html?spec=2015A&specType=1_0&group=19701

[4] OTA2015A XML schema files:

http://opentravelmodel.net/pubs/specifications/OnlinePublicationDetails.html?spec=2015A&specType=OTA_1_0

[5] OTA2015A code list:

http://opentravelmodel.net/pubs/specifications/OnlinePublicationDetails.html?spec=2015A&specType=1_0&group=19708

[6] browsable interface to the OTA XML schema files (choose model "OTA2015A"):

https://www.pilotfishtechnology.com/modelviewers/OTA/

AlpineBits® 2018-10 page 85 of 85

https://creativecommons.org/licenses/by-sa/3.0/
https://en.wikipedia.org/wiki/Basic_access_authentication/
https://opentravel.org/
http://opentravelmodel.net/pubs/specifications/OnlinePublicationDetails.html?spec=2015A&specType=1_0&group=19701
http://opentravelmodel.net/pubs/specifications/OnlinePublicationDetails.html?spec=2015A&specType=OTA_1_0
http://opentravelmodel.net/pubs/specifications/OnlinePublicationDetails.html?spec=2015A&specType=1_0&group=19708
https://www.pilotfishtechnology.com/modelviewers/OTA/

	1. Introduction
	Table of Contents
	1. Introduction
	2. The HTTPS request and response structure
	2.1. Implementation tips and best practice

	3. Handshaking action
	3.1. Client request
	3.2. Server Response
	3.3. List of AlpineBits® supported actions and capabilities
	3.4. Unknown or missing actions
	3.5. Implementation tips and best practice

	4. Data exchange actions
	4.1. FreeRooms: room availability notifications
	4.1.1. Client request
	4.1.2. Server response
	4.1.3. Implementation tips and best practice

	4.2. GuestRequests: quote requests, booking reservations and cancellations
	Push Support
	4.2.1. First client request
	4.2.2 Server response
	4.2.3. Follow-up client request (acknowledgement)
	4.2.4. Follow-up server response
	4.2.5. Implementation tips and best practice
	4.2.6. Requests Push client request
	4.2.7 Requests Push server response

	4.3. SimplePackages: package availability notifications (removed)
	4.4. Inventory: room category information
	4.4.1. Inventory/Basic (push) client request
	4.4.2. Inventory/Basic (push) server response
	4.4.3. Inventory/Basic (pull) client request
	4.4.4. Inventory/Basic (pull) server response
	4.4.5. Inventory/HotelInfo (push) client request
	4.4.6. Inventory/HotelInfo (push) server response
	4.4.7. Inventory/HotelInfo (pull) client request
	4.4.8. Inventory/HotelInfo (pull) server response
	4.4.9. Implementation tips and best practice

	4.5. RatePlans
	4.5.1. Client request
	4.5.2. Computing the cost of a stay
	4.5.3. Synchronization
	4.5.4. Server response
	4.5.5. Implementation tips and best practice

	4.6. BaseRates
	4.6.1. Client request
	4.6.2. Server response

	A. AlpineBits® server response outcomes
	B. AlpineBits® developer resources
	C. Protocol Version Compatibility
	C.1. Major overhaul in version 2018-10
	Housekeeping / Handshaking
	New action GuestRequests (Push)
	New attribute RoomType
	Reference to the online presence of the lodging structure
	Review price calculation
	Interaction with channel managers
	Server request for complete data set

	C.2. Major overhaul in version 2017-10
	AlpineBits® server response outcomes
	FreeRooms
	GuestRequests
	SimplePackages
	Inventory
	RatePlans
	BaseRates

	C.3. Minor updates in version 2015-07b
	C.4. Major overhaul in version 2015-07
	Inventory

	C.5. Major overhaul in version 2014-04
	HTTPS layer
	FreeRooms
	GuestRequests
	SimplePackages
	Inventory and RatePlans

	C.6. Compatibility between a 2012-05b client and a 2013-04 server
	C.7. Compatibility between a 2013-04 client and a 2012-05b server

	D. External links

